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Abstract

To explore questions of how human infants begin to perceive partly occluded objects, we devised two connectionist models of
perceptual development. The models were endowed with an existing ability to detect several kinds of visual information that
have been found important in infants’ and adults’ perception of object unity (motion, co-motion, common motion, relatability,
parallelism, texture and T-junctions). They were then presented with stimuli consisting of either one or two objects and an
occluding screen. The models’ task was to determine whether the object or objects were joined when such a percept was ambiguous,
after specified amounts of training with events in which a subset of possible visual information was provided. The model that
was trained in an enriched environment achieved superior levels of performance and was able to generalize veridical percepts to
a wide range of novel stimuli. Implications for perceptual development in humans, current theories of development and origins
of knowledge are discussed.

Introduction

We inhabit a visual world that is filled with objects.
Many of the objects we see are partly occluded by other,
nearer surfaces, and it is routine for objects to go in and
out of sight. Our impression of this visual array, never-
theless, is not one of fleeting or partial images (consist-
ent with what is projected onto the retina), but rather an
environment composed of solid, continuous, permanent
entities. The visual system, therefore, is adept at impart-
ing structure to an incompletely specified visual array.
How does this way of experiencing the world arise? Does
the young infant possess similar percepts to adults, in
that he or she is born with impressions of segregated,
coherent objects at various distances? Or does the
infant’s visual world consist of a series of disjoint, unre-
lated shapes that do not cohere into a sensible array
until some period of development? 

These questions have long interested philosophers and
psychologists. James (1890) described the neonate’s per-
ceptual experience as fundamentally chaotic: ‘The baby,
assailed by eyes, ears, nose, skin, and entrails at once,
feels it all as one great blooming, buzzing confusion’
(vol. 1, p. 488). James went on to suggest that ‘Infants

must go through a long education of eye and ear before
they can perceive the realities which adults perceive.
Every perception is an acquired perception’ (vol. 2, p. 78; em-
phasis in original). This position was echoed by Piaget
(1952, 1954), who proposed that at birth, the infant’s
visual world consists of a patchwork or ‘tableaux’ of
moving colors and shapes, as opposed to segregated,
coherent objects. Perceptual organization was thought to
emerge only gradually over the first two postnatal years,
via direct manual experience with objects and coordina-
tion of visual, auditory and tactile information.

More recent work on infants’ object perception has
called into question these descriptions of young infants’
capabilities and experiences. For example, Kellman and
Spelke (1983) investigated the conditions under which 4-
month-old infants perceive the unity of two surfaces
(e.g. two rod parts) that extend from behind a nearer,
occluding box (Figure 1a). Kellman and Spelke (1983;
Kellman, Spelke & Short, 1987) found that after habitu-
ation to a display in which the two surfaces underwent
common motion behind a stationary occluder (reported
by adults to consist of a single object behind an
occluder), the infants looked longer at two disjoint rod
parts (a ‘broken’ rod; see Figure 1b) than at a single,
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complete rod (Figure 1c). Given infants’ tendency to
look longer at novel relative to familiar stimuli after
a period of habituation (Bornstein, 1985), this result
suggests that these infants perceived the rod surfaces in
the habituation display as occupying a single, partly
occluded object. That is, the infants did not respond
only to what was directly visible, but instead responded
according to the distal characteristics of the event in the
habituation display. This experiment and others (see
Johnson, 2000; Needham, Baillargeon & Kaufman, 1997
for reviews), therefore, make clear that young infants’
object perception skills are more sophisticated than
allowed for by James or Piaget.

Two further conclusions were drawn from the Kell-
man and Spelke (1983) experiments. The first concerned
the kinds of visual information employed early after
birth in object perception tasks. Kellman and Spelke
tested 4-month-olds’ responses to a variety of displays
that appeared to adults to consist of two objects, one
partly occluded by another. In contrast to adults, the
infants seemed to perceive object unity only when the
partly hidden surfaces moved relative to their surround-
ings. Infants were posited not to take advantage of such
potential visual information for object unity as the
colors, textures and shapes of surfaces, relying solely on
common motion. A ‘two-process’ account of unit for-
mation has since been proposed (Kellman, 1996). For
infants younger than 6 months, common motion of sur-
faces that lead behind an occluder is both necessary and
sufficient to specify their unity. Only after 6 months do
infants utilize additional sources of information for
unity, such as surface appearance, and edge and surface
orientation.

A second conclusion drawn from the early work on
object unity concerned the possibility that for young
infants, some percepts and concepts are qualitatively
similar to those of adults: ‘Humans may begin life with
the notion that the environment is composed of things
that are coherent, that move as units independently of
one another, and that tend to persist, maintaining their
coherence and boundaries as they move’ (Kellman &
Spelke, 1983, p. 521). Spelke (1990, 1994) has since
proposed that the earliest kinds of object perception can
be characterized as reasoning in accord with fundamen-
tal physical principles. One of these is the principle of
contact: visible surfaces that undergo a common, rigid
motion tend to be connected (Spelke & Van de Walle, 1993).

More recent research has explored further both the
possibility that young infants utilize only a limited range
of available visual information in object perception
tasks, and the notion that core principles guide early
object perception. In the next two sections of this paper,
some of this evidence will be presented. Notably, there is
not yet an adequate account of the development of
object perception that can encompass the full range of
evidence, although progress has been made toward such
a theory. We describe in a subsequent section computa-
tional models that were designed to investigate whether
and how the perception of object unity in an ambiguous
stimulus (such as depicted in Figure 1a) might be
learned. Before describing the models, we review evid-
ence concerning the roles of various sources of informa-
tion in young infants’ perception of object unity, and the
ontogenetic origins of this skill.

What visual cues are important in young infants’ 
object perception?

Johnson and colleagues (Johnson & Aslin, 1996; John-
son & Náñez, 1995) probed in detail the kinds of visual
information 4-month-olds use in object unity tasks. The
first question was whether depth cues (binocular disparity,
motion parallax, and accommodation and convergence,
all potentially available in the Kellman & Spelke, 1983
rod-and-box displays) were necessary for perception of
object unity in this age group (Johnson & Náñez, 1995).
This was investigated with a two-dimensional, computer-
generated display consisting of two rod parts, undergo-
ing common motion, above and below an occluding box
(Figure 2a). The objects were presented against a tex-
tured background consisting of a regular array of dots,
in like manner to the Kellman and Spelke displays. After
the infants were habituated to the rod-and-box display,
they preferred a broken rod relative to a complete rod,
replicating the Kellman and Spelke results. This implies
that remaining information in the display was sufficient

Figure 1  Displays used by Kellman and Spelke (1983) to 
explore young infants’ perception of object unity. A: A partly 
occluded rod moves relative to a stationary occluder. B: Broken 
rod. C: Complete rod. After habituation to A, infants often show 
a preference for B relative to C, indicating perception of the 
rod’s unity in A.
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to support perception of object unity in 4-month-olds
(i.e. three-dimensional depth cues are not necessary for
young infants to perceive unity).

Johnson and Aslin (1996) went on to vary systematic-
ally the cue availability in two-dimensional rod-and-box
displays. In one experiment, they assessed 4-month-olds’
perception of object unity in displays without back-
ground texture (Figure 2b), asking if  accretion and
deletion of background texture may have contributed to
the process, perhaps as a depth cue. This cue was avail-
able in previous experiments with both three-dimen-
sional (Kellman and Spelke, 1983) and two-dimensional
(Johnson and Náñez, 1995) displays. Interestingly, the
infants preferred neither the broken nor complete rod
test display, implying no clear percept of unity during
habituation. A recent study of 4-month-olds’ perception
of transparency in two-dimensional displays found that
when background texture was visible both around and
‘through’ a surface, the infants responded as if  the sur-
face was translucent, but when texture was visible only

around the surface (and not through it), the infants
appeared to perceive it as opaque (although adults
judged this latter stimulus to contain a translucent object;
Johnson & Aslin, 2000). In two-dimensional displays,
therefore, background texture may be necessary for seg-
regation of visible surfaces into their constituent depth
planes by this age group. 

Johnson and Aslin (1996) next explored the role of
orientation of the rod parts’ edges, asking if  misaligned
edges may also impact perception of the rod’s unity. This
was accomplished in two ways. First, a display was con-
structed with rod edges that were not aligned, but were
relatable – that is, the edges would meet at an angle
greater than 90° if  extended behind the occluder (Figure
2c; see Kellman & Shipley, 1991 for a formal definition
of relatability). Second, a display was devised in which
the rod edges were neither aligned nor relatable (Figure
2d). In both conditions, posthabituation test displays
(broken and complete rods) matched the visible rod por-
tions in the habituation display. In the former condition,
there was no consistent test display preference, and in
the latter condition, there was a preference for the com-
plete rod. These two findings imply that the infants
attended to rod orientation in perception of its unity:
when edges are misaligned (Figure 2c), perception of
object unity appears to be indeterminate, and when
edges are neither aligned nor relatable, infants seem to
perceive disjoint objects (Johnson, Bremner, Slater &
Mason, 2000 and Smith, Johnson & Spelke, in press
recently obtained similar results). Note that in all three
of these conditions, the rod parts underwent common
motion, and thus would be predicted to specify unity
to 4-month-olds on the Kellman (1996) account of unit
formation.

How does perception of object unity develop?

A second line of research has addressed the conclusion
that humans begin postnatal life with certain kinds of
object reasoning skills (Spelke, 1990, 1994; Spelke & Van
de Walle, 1993). In an investigation of the possibility
that perception of object unity is available from birth,
Slater, Morison, Somers, Mattock, Brown and Taylor
(1990) tested neonates with rod-and-box displays and
reported consistently longer looking at a complete rod,
relative to a broken rod, the opposite result relative to
findings with 4-month-olds (Kellman & Spelke, 1983).
This result demonstrates that neonates achieved figure
–ground segregation in rod-and-box displays, clearly
distinguishing the rod parts from the occluder and back-
ground, but they did not appear to perceive the unity of
the rod parts. Instead, the neonates responded only to
what was directly visible in the display, failing to make

Figure 2 Displays employed to investigate the role of texture 
and edge orientation in young infants’ perception of object 
unity. A: Rod parts are aligned across the occluder, against 
a textured background. As the rod moves, it covers and 
uncovers progressively the texture, providing depth 
information. B: Rod parts are aligned across the occluder, 
against a matte black background, with no texture information 
for depth. C: Rod parts are not aligned, but are relatable 
(if extended, they would meet behind the occluder). D: 
Rod parts are neither aligned nor relatable. Four-month-old 
infants perceive unity only in A, underscoring the importance 
of edge alignment and texture to veridical object percepts. 
(Adapted from Johnson & Aslin, 1996.)
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the ‘perceptual inference’ necessary to posit the existence
of the hidden portion of the rod.1

This finding with neonates implies further that verid-
ical perception of object unity, in the sense that perform-
ance corresponds to that of adults, emerges some time
between birth and 4 months of age. This possibility was
explored by habituating 2-month-olds with the rod-and-
box display that had been shown previously to 4-month-
olds (in which the older infants had apparently perceived
the rod parts’ unity), followed by the same complete and
broken rod test displays (Johnson & Náñez, 1995). The
younger infants showed no consistent posthabituation
preference, suggesting that they had no clear percept of
either unity or disjoint objects. It is possible, however,
that the display presented to the 2-month-olds contained
insufficient visual information to activate veridical sur-
face segregation. This possibility was probed with displays
in which this information was enhanced by showing
more of the rod’s surface (Johnson & Aslin, 1995). In
this case, 2-month-olds preferred a broken rod display
during test, indicating perception of the rod parts’ unity
during habituation. A similar logic was adopted in an
investigation of neonates’ perception of object unity in
enhanced displays containing additional information rel-
ative to the displays used previously (by Slater et al.,
1990): more visible rod surface, greater depth difference,
background texture, and so on (Slater, Johnson, Brown
& Badenoch, 1996). Even with this additional informa-
tion, however, the neonates preferred a complete rod
during test, indicating perception of disjoint objects. 

Progress toward a comprehensive account

The pattern of results across experiments leads to several
conclusions. First, by 4 months, infants rely on multiple
sources of information in object perception tasks: no
single visual cue, such as common motion, drives per-
ception of object unity. Second, perception of object
unity develops – that is, surface segregation skills undergo
change, improving rapidly after birth. There are no pub-
lished reports of any other object perception task that
has been presented to infants from birth through the
first several postnatal months (see Johnson, 2000), and
at present there is no direct evidence that would suggest
that humans are born with object reasoning skills.

Despite this recent progress in our understanding of
perceptual development, fundamental questions remain
regarding the origins of object perception. We can make
a start toward answering these questions by outlining

some possibilities regarding perception of object unity.
First, it might be that unity perception develops more
or less as the visual system matures, and the infant is
thereby able to take note of available information as
improvements occur in acuity, color and luminance
discrimination, depth perception, and so on. Second,
infants may experience objects in accord with some core
principles (such as contact), but may not exhibit evid-
ence of these principles due to limitations in our testing
procedures, or an inability to access the full range of
available visual information that might trigger veridical
percepts (see Jusczyk, Johnson, Spelke & Kennedy,
1999). Third, unity perception might be learned. On this
account, visual skills are sufficient at birth (or very soon
after birth) to abstract those visual cues specifying sur-
face segregation, but the neonate fails to recognize that
partly occluded and fully visible objects seen at different
times might be one and the same. That is, visual sensit-
ivity is sufficient to impart clear percepts of all visible
surfaces in an array, but what is missing is the ability to
link separated edges across a spatial gap.

What kind of evidence would allow us to distinguish
between these contrasting views? One important tool
with which to explore this and related questions is con-
nectionist (computational) modeling, which has been
successful in exploring a range of  developmental phe-
nomena (Elman, Bates, Johnson, Karmiloff-Smith, Parisi
& Plunkett, 1996; Mareschal & Shultz, 1996; Mareschal,
2001). Connectionist models consist of networks of
interconnected processing nodes, analogous to neurons,
designed to learn through interactions with a specific
‘environment’ created by the modeler. Such models are
often produced by arranging the nodes in layers, with
connections within and between the layers. One com-
mon approach is the incorporation of an input layer that
is responsible for initial processing of stimulus informa-
tion, an output layer that provides a response, and an
intermediary hidden layer that enables the internal ‘re-
representation’ of information in the environment. Rep-
resentations are embodied in the weights assigned to
connections or as patterns of activation across a bank of
nodes, and are developed by extracting the statistical
regularities present in the environment. 

Computational models can provide rigorous and tan-
gible accounts of development, because the time course
and nature of learning can be captured and made
explicit, and in implementing a model, the modeler is
forced to make explicit what is meant by ‘representa-
tion’, ‘acquired knowledge’, ‘innate knowledge’, and so
on. If  a model can be shown to acquire a particular
behavior, then the constraints built into that model (in
terms of prior ‘knowledge’, information processing
mechanisms and learning algorithms) constitute possible

1 Note that both the neonate’s and the adult’s percepts are entirely
consistent with the available evidence. What has changed is the bias in
how the infants respond to ambiguous events.
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candidate constraints on human learning. Of course, it
is always possible that humans operate using a different
set of constraints. Models do not provide definitive
answers to questions of human information processing.
What they provide, instead, is a set of possible solutions. 

In the present article we report on two models of the
development of perception of object unity, with the goal
of explaining human performance across development.
The models were first trained by exposure to simple
events in a simulated, schematic visual environment. In
these events, unified and disjoint ‘objects’ moved past
and behind an occluding ‘screen’. The models were
endowed with the ability to extract object motion, com-
mon motion of two objects, accretion and deletion of
texture, T-junctions (an intersection where one surface
occludes another, so-called because the projected edge of
the far surface stops at the edge of the near surface,
analogous to the stem and bar of a T, respectively) and
edge alignment. The models also possessed a short-term
memory, such that when an object became occluded, a
rapidly decaying trace of that object’s representation
remained. After varying amounts of training, we pre-
sented novel test events that incorporated the visual cues
to which the model was sensitive. Test events always pre-
sented partly occluded (never fully visible) objects. Using
the Johnson and Aslin (1996) and Kellman and Spelke
(1983) strategy, we systematically included or omitted
cues across displays and observed the models’ responses.
We found that after sufficient training, the models
responded appropriately to object unity under condi-
tions of partial occlusion, demonstrating the potential
importance of learning in the development of object per-
ception. The nature of the training environment (i.e. the
cues that were made available) was critical in determin-
ing performance.

Building the models

The model assumptions

Our models were based on three assumptions: first,
infants are capable of detecting visual information (such
as common motion) prior to its effective utilization in
object perception tasks; second, infants acquire the
ability to perceive object unity in ambiguous stimuli
through experience with a visual environment in which
moving objects become occluded and unoccluded; and
third, young infants are equipped with short-term
memories. (Each assumption is discussed subsequently
in more detail.) During a period of training, the models
learned to associate certain perceptual cues with the
presence of  a single unified object or the presence of

two disjoint objects. After training, the models applied
this ‘knowledge’ to novel events in which object unity
was not directly visible (i.e. when two rod parts were
visible above and below the occluder). The key to learn-
ing to perceive unity in these ambiguous stimuli was the
presence of a short-term perceptual memory and expos-
ure to objects that became occluded and unoccluded. 

The first assumption: detection, then utilization

Infants are born with a functional visual system, and
exhibit marked preferences for some classes of stimuli
over others: moving stimuli are preferred to static stim-
uli, patterned stimuli to unpatterned stimuli, high con-
trast to low contrast, and horizontal contours to vertical
contours, among others (see Slater, 1995 for review). At
birth, infants also provide evidence of figure–ground
segregation. Recall that neonates preferred a complete to
a broken rod after habituation to a rod-and-box display,
implying perception of disjoint objects (i.e. two rod
parts) in the original display (Slater et al., 1996). When
habituated to a complete rod in front of an occluder, in
contrast, neonates subsequently preferred a broken rod
test display (Slater et al., 1990). These findings suggest
that the neonates formed a clear impression of distinct,
segregated surfaces in both displays: two rod parts sep-
arate from the occluder and background in the former
condition, and a single rod separate from the occluder
and background in the latter condition. Despite these
visual skills, effective utilization of visual information in
object segregation tasks lags behind its detection at
birth. For example, T-junctions were available as cues for
relative depth in the Slater et al. (1990, 1996) occluded-
rod displays, but the neonates did not appear to have
perceived occlusion in these displays. That is, the rod
surfaces appear to have been perceived to end at the rod–
box intersection, rather than continue behind, suggest-
ing that T-junctions were detected (and contributed to
figure–ground segregation) but misclassified as indicat-
ing edge termination rather than edge continuation. It is
unlikely that the infants simply perceived the rod and
occluder surfaces to occupy the same depth plane,
because even at birth infants can distinguish objects at
different distances (Slater, Mattock & Brown, 1990).

The potential role of  surface motion in neonates’
perceptual segregation is less clear, due to a complex
developmental trajectory for motion sensitivity (see
Banton & Bertenthal, 1997). It has been claimed that
infants younger than 4 to 6 weeks of age lack cortical
mechanisms subserving motion discrimination, a claim
based in part on infants’ preferential looking toward one
side of a stimulus containing regions moving in oppos-
ite directions vs a uniform pattern on the other side
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(Wattam-Bell, 1991, 1996a). In contrast to the Wattam-
Bell experiments, evidence suggesting early motion sens-
itivity was obtained by LaPlante, Orr, Neville, Vorkapich
and Sasso (1996) and Laplante, Orr, Vorkapich and
Neville (2000) who demonstrated discrimination of trans-
lational and rotational direction in neonates, and Náñez
(1988), who reported avoidance responses to looming
stimuli in 3-week-olds. These apparently conflicting find-
ings may be reconciled by considering that evidence of
motion sensitivity in a particular experimental para-
digm is strongly dependent on stimulus characteristics
(e.g. slow vs fast velocity), type of  motion (e.g. rotation
vs looming) and methodology (e.g. paired vs sequential
presentation) (see Banton & Bertenthal, 1997). It appears
likely, then, that motion sensitivity is present prior to its
effective contribution to all perceptual segregation tasks
(cf. Wattam-Bell, 1996b for discussion).

The second assumption: learning object properties 
derives from visual experience

Neonates exhibit marked preferences for faces over
other visual stimuli (Slater, 1995) and quickly learn to
distinguish among the faces they see. For example, there
is evidence that individual infants develop a preference
for their own mother’s face, presumably the most
often-viewed face in the visual environment, within a
few hours of birth (Walton, Bower & Bower, 1992; cf.
Walton & Bower, 1993). This finding implies highly
efficient mechanisms that are functional at birth to rap-
idly detect and discriminate salient visual stimuli, and to
subsequently learn characteristics of  these stimuli
(Slater et al., 1998; Slater, Bremner, Johnson, Sherwood,
Hayes & Brown, 2000). Moreover, neonates have been
shown to process compound stimuli as composed of a
combination of attributes, indicating that at birth, infants
attend to multiple aspects of individual displays (LaPlante
et al., 2000; Slater, Brown & Badenoch, 1997).

The third assumption: objects are remembered over 
a short interval

Neonates, like older infants, will habituate to repeated
presentation of a stimulus, and recover interest to a
novel stimulus (Slater, 1995). This suggests a functional
short-term memory that guides neonates’ attention to
familiar and unfamiliar stimuli, and retains stimulus
characteristics over brief  intervals.

The model architecture

Figure 3 illustrates the model architecture. The models
received input via a simple ‘retina’. The information pre-

sented to the retina represented objects, their orientation
and motions, and the background. This information was
processed by seven encapsulated perceptual modules,
each of which identified the presence of one of the fol-
lowing cues during specific portions of training and test
events: (a) motion anywhere on the display; (b) co-
motion of objects in the upper and lower halves of the
display, whether in-phase or out-of-phase; (c) common
motion of objects in the upper and lower halves of the
display; (d) parallelism of object edges in the upper and
lower halves of the display; (e) relatability of object
edges in the upper and lower halves of the display; (f )
texture deletion and accretion and (g) T-junctions. We
chose these particular cues because of the importance of
motion (i.e. cues a, b and c), edge orientation (cues d
and e), and depth (cues f  and g) to young infants’ per-
ception of object unity (Johnson & Aslin, 1996; Kellman
& Spelke, 1983).

Each perceptual module fed into a layer of hidden
units with sigmoid activation functions, which in turn
fed into a response (output) layer. The response units
determined the model’s decision as to whether the
ambiguous stimulus (i.e. the partly occluded rod) con-
tained a single object, two disjoint objects, or neither (a
response we termed ‘indeterminate’). Unity was also a
‘primitive’, like the other cues, in that a model could
perceive it directly in unambiguous cases (i.e. when the
object was visible to one side of the occluder). These
types of response to unity are consistent with evidence
from human neonates. In the absence of any occlusion,
neonates can discriminate between a broken and an
unbroken visible rod. Indeed, this is a necessary precon-
dition for interpreting the looking-time behaviors of
neonates in experimental studies of the perception of
object unity (e.g. Slater et al., 1990). In the absence of direct
perception (i.e. when the objects were partly occluded)
the perception of unity was mediated by its association
with other, directly perceivable, cues.

Figure 3 Architecture of the models. See text for details.
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Input and output representations and training

The models experienced input consisting of a central
occluding screen, and either one long or two shorter
objects (see Figure 4). The model’s task was to determine
whether one or two objects (not including the occluder)
were present in the display. Feedback was provided by
direct perception when the objects were not partly occluded
(i.e. on either side of the screen) and by a decaying mem-
ory trace when direct perception was not possible. The
models were tested for unity responses periodically after
different training intervals, with displays in which object
unity was potentially ambiguous. That is, testing was
conducted with displays in which the objects were not
visible on either side of the screen, only above and below
it. (Testing of the models differed in an important respect
relative to infants, because infants are observed for a
posthabituation novelty preference. It seemed unneces-
sary to build a novelty preference into the models, given
that we wanted to know if unity was perceived in ambigu-
ous events, and this information was obtainable directly
from the model.) Training and test displays were varied

to incorporate or omit cues known to mediate perception
of object unity: motion, alignment, relatability, T-junctions,
and accretion and deletion of texture. Figure 6 lists the
perceptual cues present in each event. 

All events began with the object (or objects) moving
on to the display from the side. During this initial por-
tion of the event, the object was unobstructed from view.
The object moved across the display, passed behind the
area occupied by the occluding screen, reappeared on the
other side of the screen, and continued off  the display
(Figure 5).

The perceptual modules

The bottom half  of the network (see Figure 3) encom-
passes perceptual abilities that are functional at the ear-
liest time of testing unity. Each module was designed to
compute the presence or absence of a single cue in the
displays experienced by the model. The modules incor-
porated general neural computational principles of sum-
mation, excitation, inhibition and local computation.
However, there was no learning involved. The modules
were tailored to the specific nature of the model’s experi-
ence and were intended as analogues of the neonate’s
visual system, but not to embody its anatomy or physi-
ology.2 However, they did instantiate some of the basic
principles believed to underlie the computation of the
associated visual cues (see Spillman & Werner, 1990 for
a review). For a more complete description of each per-
ceptual module, see the Appendix.

What drives learning?

Learning was driven by an error feedback signal partly
obtained directly from the environment and partly from

Figure 4 Schematic depictions of training and test events. 
Refer to Figure 6 for the cues available in each event.

Figure 5 Five time steps through training Event 1. The object 
(unified, in this case) appears both as fully visible and partly 
occluded at different times during the event.

2 The fact that these modules are operational at the earliest time of
testing does not necessarily imply that they are ‘hardwired’ from birth.
For example, Nakissa and Plunkett (1998) described a set of simula-
tions in which networks evolve over many generations to become excel-
lent learners of phonological discriminations. Networks from the final
generation are unable to discriminate phonemes prior to any experi-
ence, but only a few minutes of real world speech are necessary for
categorical perception of phonemes. One can imagine a similar scheme
in which a short time of visual experience would fine-tune a set of crude
perceptual modules, but at present this remains an empirical question.
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memory. When the object was visible, the environment
provided immediate feedback about the unity of the
object via the direct perception link (see Figure 3). When
the object was not completely visible, the environment
could not provide feedback about the unity of the object.
In this case, the model relied on a short-term, rapidly
decaying memory. This memory was always active and
encodes information obtained from direct perception
(specifically unity information). Immediately following
occlusion, the memory provided a trace of the state of
the object prior to occlusion. After a short delay, that
information decayed and was no longer available for learn-
ing about the relations between available cues and unity.

The relation between direct perception and memory is
embodied in the target signal, T(t), used for training the
network weights:

Ti(t) = E i(t) + µ.Ti(t − 1) (1)

with −1 < Ti < +1, 0 < µ < 1, and Ei = 0.0 when the rod
is occluded. Ei is the unity feedback signal obtained
from the environment (by direct perception) for output
i, and µ is a parameter controlling the depth of memory.
When Ei = 0.0 (i.e. there is no direct percept of unity),
the target (Ti(t)) is derived entirely from the memory
component µ.Ti(t − 1), the second term in the right-hand
side of equation 1.

The weight updates are computed according to an
error reduction algorithm (backpropagation) that minim-
izes the difference between the actual output and the
target output activations. The system self-organizes in
such a way as to minimize the difference between its
unity prediction and what it perceives as true in its envir-
onment. There is no external agent providing the net-
work with the desired answer. All target information
required for updating weights is obtained directly from
the environment (through direct perception) in the same
way as the perceptual input is obtained, or from within
the system (through memory). In other words, this is an
example of unsupervised learning. Similar accounts of
self-organization using backpropagation networks can
be found elsewhere (e.g. Mareschal, French & Quinn,
2000; Munakata, McClelland, Johnson & Siegler, 1997;
see also Baldi, Chauvin & Hornik, 1995, for formal
proofs of the equivalence of some linear backpropaga-
tion networks with some linear self-organizing systems).

The model’s unity response was driven by a combina-
tion of activation from the direct and mediated routes.
When direct perception was possible, the activation from
this route overrode that of the mediated route by satur-
ating an output unit’s response towards +1 or −1. When
direct perception was not possible, the unity response
was mediated through its associations with other cues
that are directly available. In the present paper, we are
interested in assessing the mediated route’s performance.
The degree to which the model’s mediated response was
correct when direct perception was not possible reflects
how well it responded to incomplete information. The
degree to which the mediated route’s prediction was cor-
rect when direct perception was possible reflects how
well the network has internalized general information
about objects that applies across its entire learning envir-
onment. Network performance can be assessed either
when direct perception is possible (events 3, 4 and 9 to
26 in Figure 4), or when it is not possible (e.g. on events
1, 2, 5, 6, 7 and 8).

In assessing the model’s performance we compared
the output of the mediated route with direct perception
when available. When direct perception was not possible,
the network’s response was compared to the modeler’s
knowledge of what condition the ambiguous stimulus
was derived from. A mediated response was scored as

Figure 6 Cues available in each event.
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correct if  it accurately predicted the origins of the
ambiguous event (e.g. a unified object was perceived
when the event was caused by a unified object). It was
scored as incorrect when it predicted the opposite origins
of the ambiguous event (e.g. two objects were perceived
when a single object caused the event), and it was scored
as indeterminate when the output was either (+1, +1) or
(−1, −1). Because output units were linear, for the pur-
poses of scoring the network responses the output values
were classified as +1 if  they were positive and −1 if  they
were negative. These responses were then compared with
human responses under similar conditions to evaluate
how well the model matches human data. A network’s
performance was tested by presenting it with events con-
sisting of the ambiguous segment of the trajectory only.
In other words, during testing, the networks could not
use information available in the unambiguous segment
of the trajectory to derive unity. The test results reported
below were scored on what would correspond to time
steps 7 and 8 of a full 14 time step event.

We report on two models that each contained the
same architecture and training procedures previously
described. Model 1 was trained in a ‘simple’ perceptual
environment (a small subset of the events depicted in
Figure 4), and Model 2 was trained with an ‘enriched’
environment (a larger subset of the events). To anticip-
ate, we found that both models learned to predict unity
in an ambiguous event, but the model that experienced
an enriched environment acquired the most general
knowledge of the relation between the presence of indi-
vidual perceptual cues and the percept of unity.

Model 1: Learning in a simple environment

In the first model, ten networks were exposed to a world
with minimal, but ecologically valid, constraints. These
constraints correspond to events that are observable in a
natural environment (and are, therefore, events with
which even very young infants might have experience).
The learning environment consisted of a single unified
object moving across the display with or without back-
ground texture (events 1 and 2), and two co-linear dis-
joint objects moving across the display with or without
texture (events 3 and 4). Learning occurred across the
complete object trajectory (i.e. across both the ambigu-
ous and unambiguous segments of the trajectory). Ten
networks were tested, rather than only one, to explore
differences in performance as a function of the starting
points for training (i.e. random initial weights and
events, described in the next paragraph). Events were
randomly selected and presented to the networks one at
a time. Each network, therefore, experienced its own

idiosyncratic series of events determined by the random
selection procedure. Networks were periodically tested
for prediction of unity after specific intervals during
training (10, 50, 100, 500, 1,000, 1,500, 2,000, 3,000,
4,000, 5,000, 6,000, 7,000 and 8,000 epochs).

Figure 7 shows the performance of the ten networks
across all 26 events during testing. Consider first the
four events on which Model 1 was trained (events 1 to
4). By 50 epochs, the networks correctly signaled the
presence of a single object or two distinct objects on the
unambiguous portion of the trajectory of these events
(when the object elements are to the left or right of the
occluder, not shown in Figure 7). When the networks
were tested with the ambiguous portion of the trajectory
(when the object elements are above and below the
occluder), they quickly reached high levels of performance
in all of the familiarization events. Learning was more
rapid in events 3 and 4 because there are no ambiguous
portions in these events. When tested with ambiguous
events, accurate performance was delayed. Nevertheless,
by 1,500 epochs all networks perceived events 1 and 2 as
arising from a single, partly occluded object. 

To understand the generality of knowledge encoded in
the mediated route, consider next performance on events
with which the networks were not trained (events 5 to
26, Figure 7). By 1,500 epochs, the networks performed
correctly on the ambiguous portions of 15 of the
remaining 22 test stimuli (68.2% of the events), but
failed on events 10, 11, 19 to 21, 23 and 24. Note that
events 15 to 26 are all displays with two objects in which
there is no common motion. Failure on these events is
tantamount to perceiving a single unified object even
though the two object components are moving in the
opposite direction. These networks also failed to per-
form correctly on 3 of the 26 events (events 9, 10 and 22)
when tested with the visible unambiguous segment of
the event, even after maximum training (8,000 epochs). 

In summary, the networks that were trained with a
simple perceptual environment learned to perceive
object unity quite rapidly in most of the displays with
unified objects, and perceived disjoint objects in most of
the other displays. However, the networks were able to
generalize their knowledge only to events that were rel-
atively similar to those that were experienced during
learning. It is not immediately clear why the networks
failed to use some of the cue combinations appropri-
ately. Inspection of conditions that led to unsuccessful
performance does not lead to straightforward interpreta-
tion of  all instances of  failure, although it is notable
that events 19, 20, 21, 23 and 24 each contain some
combination of T-junctions, relatability and co-motion
(but not common motion). These are all cues that can
lead to the percept of unity, especially on the training set
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experienced by the networks. Overall, then, performance
was accurate across the ambiguous and unambiguous
portions of the 26 events, but the few idiosyncracies sug-
gest that impairments in performance might be tied to
the limited set of training events.

Model 2: Learning in an enriched environment

In the second model, we extended the range of learning
experiences by using a training set that was more repres-
entative of the entire range of events. This training set was

Figure 7 Model 1 performance. Ten networks, each with random initial weights between nodes (perceptual modules, hidden 
units and output units), were trained with events 1–4. The networks were able to generalize learning to novel events, but performance 
was constrained by the limited training experience.
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events 1, 2 and 17 to 22, providing Model 2 with addi-
tional exposure to disjoint objects relative to Model 1.
Other aspects of the design, training and testing of the two
models were identical. As was the case for Model 1, the
mediated route in the Model 2 networks learned quickly
(by 10 epochs) to detect either one or two objects in the

unambiguous portion of the test events on which they
were trained. The more rapid adaptation of the mediated
route, relative to Model 1, was due to the more frequent
exposure to disjoint objects in the training environment.

Figure 8 shows the performance of the ten networks
during the ambiguous portions of all 26 events across

Figure 8 Model 2 performance. Ten networks, each with random initial weights between nodes (perceptual modules, hidden 
units and output units), were trained with events 1, 2 and 17–22. The architecture was identical to the networks in Model 1, 
but performance was superior due to the enriched training environment.
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testing. Consider first the events on which Model 2 was
trained. By the end of training, the networks achieved
high levels of performance in 7 of the 8 familiarization
events (events 1, 2 and 17 to 21), and half  the networks
responded appropriately in the eighth (event 22). Ini-
tially, the networks perceived the single object in event 1
as arising from two disjoint objects, a tendency that was
not overcome until after 4,000 epochs. There was then a
period (from about 5,000 to 7,000 epochs) in which an
increasing proportion of the population of networks per-
ceived this stimulus as arising from a single unbroken
object. There was much variation across the networks,
therefore, as to how this event was perceived. The vari-
ation arose from the sequence of events experienced by
the networks during training (i.e. a preponderance of
disjoint objects), and the initial random weights prior to
training. By 8,000 epochs, 9 of the 10 networks perceived
this ambiguous event as arising from a single unbroken
object, indicating that they had learned to go beyond a
general default response that was consistent with the
majority of training events (recall that the majority of
training events arise from two distinct objects). A
slightly different pattern emerged when tested for unity
perception in event 2. As in event 1, the networks per-
ceived disjoint objects during the initial training period,
but were able to overcome this tendency more quickly to
respond appropriately to the object’s unity. The only dif-
ference between events 1 and 2 is the presence of texture
in event 1, which seems to have made perception of
object unity more difficult, a counterintuitive result that
is at odds with human performance (Johnson & Aslin,
1996). Why would the texture cue have a negative impact
on perception of unity in this model?

This result can be explained by considering the train-
ing events presented to Model 2, and the nature of learn-
ing by connectionist models. Connectionist networks are
powerful statistical learners, and can extract even very
slight patterns from background noise. This is especially
important in the present situation because of the sim-
plicity of the training environment. These networks are
‘looking’ for subtle cues when, in fact, there is nothing
very subtle going on. Because there are an equal number
of texture events and non-texture events in the training
set, it would seem that accretion and deletion of texture
is not a useful cue and that the networks should learn to
ignore it. Even though there are an equal number of
texture and non-texture events, however, there are
slightly more image frames in which the texture module
will respond ‘yes’ (to accretion and deletion of texture)
than image frames in which it will respond ‘no’. (Recall
that an event is made up of a sequence of frames.) 

The texture module outputs 1 when the number of
texture elements in the current time step is different than

it was in the previous time step, and 0 if  there is no
change. There is exactly the same number of frames with
texture as those without texture, but an imbalance arises
when we pass from a training event with texture to one
without texture. Even though this latter event does not
have any texture elements, the texture module will
respond initially by signaling that there has been texture
deletion in the first time frame, because the network has
gone from ‘seeing’ texture to ‘not seeing’ texture when
passing between events. In other words, the first frame
of any event without texture that follows an event with
texture will be marked as having texture deletion. This
happens in 25% of the events. Each event consists of 14
frames, so the networks experience a texture deletion
output (1/14) × 0.25 = 0.02 times more often. That is,
approximately 51% of frames involve the texture dele-
tion feature active whereas 49% involve the feature inac-
tive. As noted previously, the enriched training set has
many more disjoint events than unified events which
implies that there is a slightly higher correlation between
the presence of texture deletion and the presence of dis-
joint objects. For these networks, therefore, the presence
of texture deletion is a weak predictor of two objects
being present. The correlations that underlie this associ-
ation are very small, and it is thus a very weak link that
only comes into play when the other cues are well bal-
anced. Notably, the networks overcame the tendency to
associate texture with disjoint objects eventually in per-
ceiving unity in event 1.

Consider next performance on events to which the
networks were not exposed during training. By the end
of 8,000 epochs, the networks achieved accurate perform-
ance on 14 of these 18 events (77.8%, a higher success
rate than the 68.2% success rate of Model 1), suggesting
that the additional training events led to greater gener-
alization of knowledge relative to Model 1. Inspection of
Figure 8 reveals that the enhanced knowledge of Model
2 incorporates a role for both motion and alignment in
perception of object unity. In events 5 and 6, for example,
in which there is no motion, unity is perceived accurately
by 1,500 epochs. This percept is achieved more quickly
than in comparable displays with motion (events 1 and
2), suggesting that motion is a cue that biases against
unity perception. As in the case of the texture cue de-
scribed previously, this counterintuitive result (relative
to human performance) can be accounted for by appeal-
ing to the nature of the training set. Recall that the
majority of training events consisted of disjoint objects,
and these all contained co-motion as a cue (but not
common motion). Motion, therefore, in the form of co-
motion, became associated with disjoint objects; later in
training, common motion (available as a cue in events 1
and 2 in the training set) became associated with unity.
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If  perception of unity in events 1 and 2 was not
achieved primarily on the basis of motion, what cue or
cues led to accurate performance? Note that alignment
(the combination of parallelism and relatability) was
present in these two events but none of the other train-
ing events, leading the networks to associate alignment
to unity, rather than to disjoint objects. In the absence
of motion, therefore, the networks more quickly per-
ceived unity when alignment was available (events 5 and
6). The networks also seemed to use parallelism and
relatability separately as cues for unity, even though this
led to inaccurate performance: unity was perceived in
events 7 and 8, each with relatability but not parallelism,
and events 23 and 24, each with parallelism but not
relatability. This response pattern was due to the associ-
ation of each cue to unity in training events 1 and 2.
This tendency to perceive unity from parallelism and
relatability was overcome, however, with the additional
information for disjoint objects provided by the lack of
T-junctions in comparable displays (events 9 and 10, and
events 25 and 26, respectively). Lack of T-junctions was
associated consistently with separate objects during
training in events 17, 18, 21 and 22.

In summary, the networks in Model 2 learned to per-
ceive either unified or disjoint objects in a wide range of
new events. Performance was superior relative to Model
1, due to the provision of a richer training set. The idio-
syncrasies of Model 1 did not characterize performance
in Model 2, whose responses were more readily inter-
preted in light of training experience. The few instances
of inaccurate performance in Model 2 were explained by
appealing to the nature of learning in connectionist net-
works, and the limitations of the training environment.
These powerful statistical learners extracted regularities
that were unique to their training environment and that
do not reflect regularities characteristic of the human
environment. Increasing the richness and complexity of
this environment (thereby bringing it more in line with
the infant’s environment) should eradicate these spuri-
ous correlations. For these networks, therefore, their
responses were not inaccurate (strictly speaking), given
the perceptual environment they were provided. 

Using perceptual cues across development

In this section, we explore how associations between
cues and percepts build up over learning. In this way we
can examine more closely a key concept in investigations
of perceptual development: the manner in which an
immature perceptual system begins to utilize the sensory
information gleaned from the environment to form
higher-order representations, and how different cues

contribute to these representations at different points in
development.

The simulations reported in the previous section (Model
2) were repeated with the same architecture and training
environment, with one exception: an initial investigation
of the role of the hidden units in the models described
previously showed that only two of the three hidden
units played any functional role (i.e. the third hidden
unit was redundant). To simplify the analyses of weights
in the network, the simulations reported in this section
were run using two instead of three hidden units.

Weight matrices after training

A better understanding of how the different cues con-
tribute to the percept of unity can be obtained by look-
ing at the strength of the connection weights in the
networks. Figure 9 depicts a schematic view of  the
connection weights in one network after 8,000 epochs of
training with events 1, 2 and 17 to 22. At the top of the
figure are the two output units: one of these signals
unity, and the other signals disjoint objects (recall that
an output across these units of (+1, −1) is scored as a
‘one object’ or unity response, and an output of (−1, +1)
is scored as a ‘two objects’ response). At the center of
the figure are the two hidden units, and at the bottom
are the seven perceptual modules. Each hidden unit and

motion co-motion common
motion parallelism relatability texture T-junction

hidden unit 1
(1.794)

output unit 1:
‘one object’

(0.249)

−2.366

1.620

−2.638

2.753 −2.753 3.528 −3.528

output unit 2:
‘two objects’

(−0.249)

hidden unit 2
(3.471)

−0.197

−1.485

0.847

−1.748

−2.284

−0.133

−2.305

−0.795

0.254

−0.700

0.114

Figure 9 Connection weights (and resting activations in 
parentheses), after training, in one of the Model 2 networks. 
See text for details.
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each output unit has a variable threshold, which is
implemented through the adaptation of its resting level
of activation, shown in parentheses. Arrows between
boxes depict connection strengths between units. To take
account of resting activations, the values shown in Fig-
ure 9 consist of the actual connection weight plus the
value of the resting activation of the receiving unit.
These numbers, therefore, correspond to the extent to
which the contribution from the sending unit (i.e. an
input unit or a hidden unit) affects the receiving unit (i.e.
a hidden unit or an output unit) over and above that
receiving unit’s resting activation levels.

Inspection of Figure 9 reveals that the weights
between the hidden units and output response units are
similar: When firing positively, both hidden units will
activate output unit 1, signaling ‘one object’, and deac-
tivate output unit 2, suppressing the signaling of ‘two
objects’, when firing positively. This is because both hid-
den units have positive weights to output unit 1 and
negative weights to output unit 2. When both hidden
units fire negatively, the opposite occurs. When both
units agree, therefore, their activation will result in the
same output. If  the hidden units do not agree, a conflict
resolution mechanism has developed: in this particular
network, the connection weights from hidden unit 2 are
larger than those from hidden unit 1. In case of conflict,
then, the response from hidden unit 2 will drive the
output response over and above that of hidden unit 1.

Note that output unit 1 has a small positive bias in
resting activation (0.249), whereas output unit 2 has a
small negative bias in resting activation (−0.249). This
tends to favor the network to signal ‘one object’ (i.e. a
(+1, −1) response). This tendency is reinforced by the
resting activations of the two hidden units, which are
strongly positive in both. In other words, the default for
this network, after training, is to perceive unity in the
absence of any perceptual evidence.

Inspection of the connection weights between the hid-
den units and the perceptual modules reveals how the
presence or absence of different perceptual cues causes
the network’s output response. First, note that both hid-
den units have negative associations with the presence of
motion. That is, the presence of motion will tend to
cause the hidden units to send negative activation to the
output units (especially that of hidden unit 2) and hence
will move the network toward a ‘two objects’ response.
As discussed in the previous section, all the training
events involve motion, and 6 of the 8 events involve two
objects. Motion, therefore, becomes associated with the
presence of two objects. A more subtle point follows
from this. Because motion is present in all the training
events, negative activation is always flowing into the hid-
den units during learning. When paired with the positive

bias that is always present, the motion cue effectively
resets the baseline activation to below zero. So, although
there is an initial bias toward producing a ‘one object’
response, that bias is reversed in the presence of motion.
As discussed subsequently, the presence of other cues
negatively and positively associated with either hidden
unit can tip that unit’s response, and the network’s
response, in one direction or the other.

Next, note that the other cues will each tend to have
different effects on hidden unit 2, the stronger of the two
hidden units. Recall that this hidden unit is initially
biased to produce a ‘one object’ response, and that an
input of strong negative activation will produce the
opposite response. Hidden unit 2 has a strong negative
weight with the co-motion cue (−2.284). Along with the
motion cue, therefore, the presence of co-motion tends
to produce a ‘two objects’ response. T-junctions are
most strongly associated with the presence of one object
(1.620), followed by common motion (0.847), relatability
(0.254) and parallelism (0.114). Finally, for this network,
the texture is a weak predictor of two objects being
present. Note that hidden unit 2 has picked out many of
the cues that we would normally see as predicting unity,
and that both relatability and parallelism provide inde-
pendent contributions to the ‘one object’ response.

Hidden unit 1, the weaker of the two hidden units, has
developed a completely different set of associations.
Specifically, this unit has developed negative associations
with all cues. As a result, as long as something is present
on a display, its response will counteract the initial bias
towards responding with unity by attempting to cause a
‘two objects’ response. This embodies the fact that the
large majority of training events involve two objects.
Hidden unit 2 must thus fire strongly to bring the net-
work to a ‘one object’ response. Any weak response
from hidden unit 2 (e.g. when cues provide conflicting
information) allows hidden unit 1 to activate the output
unit 2 by firing negatively. 

Examination of these connection weights, therefore,
illustrates how the network is able to combine evidence
in a complex fashion from a series of perceptual mod-
ules to make a unity prediction. In particular, no single
cue is sufficient to perceive unity, and cues take on dif-
ferent degrees of importance in different contexts. In the
next section we explore how these associations build up
with learning.

Learning cue associations

Figure 10 shows the connection weights between the
outputs of the perceptual modules and the hidden units
across development. Connection weights are represented
by squares. The larger the magnitude of the weight, the
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larger the square; positive values are in white and negat-
ive values are in black. Each of the 12 panels depicts the
connection matrix at different points in development
(top to bottom: epochs 0, 10, 50, 100, 1,000, 2,000,
3,000, 4,000, 5,000, 6,000, 7,000 and 8,000). 

For epochs 0 to 1,000 the weights from the perceptual
modules remain close to zero. Initially, then, the network
does not utilize information from any of  the perceptual
modules in producing its response. That response (which
is predominantly a ‘two object’ response) is triggered by
a strong early bias which is set by adjusting the output
units’ resting activation levels. Because most of the events
in the learning environment arise from two objects, a quick
solution to predicting when there is one or two objects
is to always predict two. This is correct in many cases and
does not require the assimilation of multiple perceptual
cues. Of course, this is not optimal performance, and the
network uses this strategy only as an initial solution.

At 2,000 epochs, the network begins to rely on differ-
ent perceptual cues to produce its response and the basic
structure of the mature weight matrix (discussed in the
previous section) begins to appear. Hidden unit 2
acquires a fairly large positive bias (thereby biasing it to
produce a unity response). Motion, common motion,
relatability and T-junctions have become positively asso-
ciated with this unit, and hence these all become cues
that signal a single unified object. In contrast, co-motion
and texture become strongly associated with the percept
of two objects. At this point, hidden unit 1 has the same
(though weaker) pattern of associations between per-
ceptual cues and the output response as hidden unit 2.
Initially, then, hidden unit 1 is redundant.

By 3,000 epochs, the weights have continued to grow
in magnitude, but have remained in essentially the same
pattern as at 2,000 epochs. A weaker response from the
perceptual modules, therefore, will trigger the same
responses from the network, which is becoming more
sensitive to weaker forms of the same evidence in inter-
preting an ambiguous stimulus. By 4,000 epochs, hidden
unit 1 has emerged with it own role: all the connections
between the perceptual modules and this unit have
become negative. At this point, hidden unit 1 acts to bias
the network against a unity response, thereby ensuring
that hidden unit 2 elicits a unity response only when
there is strong evidence to do so. 

From 5,000 epochs onwards, the pattern of associ-
ations between the perceptual modules and the hidden
units remains stable. The changes with development
involve an increase in the magnitude of the weights,
leading to an increased sensitivity to the relevant cues.
By epoch 6,000, parallelism decreases in association with
hidden unit 2 until it reaches a negligible level at 8,000
epochs.3 The texture cue also weakens its association
with hidden unit 2. In contrast, all weights linking the
perceptual modules with hidden unit 1 continue to
increase in magnitude.

In summary, throughout development the network
progressively relies on an increasing range of cues to
determine its response. The connection weights embody
the association between perceptual cues and unity in
both ambiguous and unambiguous contexts. The chal-
lenge for the network is to discover a set of weights that

Figure 10 Development of connection weights between the 
seven perceptual modules and bias unit, and the two hidden 
units. Right to left: 1. Motion. 2. Co-motion. 3. Common 
motion. 4. Parallelism. 5. Relatability. 6. Texture. 7. T-junctions. 
Top to bottom: Activation strengths of each connection after 
varying numbers of epochs.

3 Interestingly, parallelism did not become associated with unity dur-
ing any time of this network’s development, unlike the majority of the
Model 2 networks reported previously. This is the only instance in
which the present network and the previous networks differed with
respect to which cues predicted unity. The difference may lie in the
somewhat stochastic nature of the development of connectionist net-
works, due to variations in starting conditions, randomized training
schedules, and the fact that there is no unique set of cue combinations
that can be used to perceive unity correctly.
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is consistent with both contexts, and is consistent with
both one object and two object events. Many of the
associations that emerge reflect the fact that the majority
of events this network experiences are unambiguous
(fully visible) and arise from two distinct moving objects.
These sorts of events are the first that are learned in the
network’s mediated route. Only later in development
(4,000 epochs and afterward) does the mediated route
begin to learn associations that allow it to function with
ambiguous events. 

An important finding from the analyses in this section
and the previous section is that no single cue is necessary
or sufficient to the perception of unity. Instead, the
importance of a cue depends on the context in which it
appears. Individual cues do not maintain constant
importance as markers of unity across all events, but
acquire more or less importance in accord with other
available information.

General discussion

Our goal in designing connectionist models of the devel-
opment of perception of object unity during partial
occlusion was to explore whether veridical percepts (i.e.
matching adult human performance) could arise in the
absence of prior knowledge of occlusion, and instead
emerge as a result of  pre-established lower-level per-
ceptual skills, learning algorithms and specific kinds of
experience. The answer to this question is clearly
affirmative. Even Model 1, which was trained in a relat-
ively impoverished perceptual environment (i.e. with a
small sample of  the events), achieved good perform-
ance with novel events, in perceiving unity when it was
potentially ambiguous. Model 2 experienced a richer
perceptual environment during training and achieved
even better performance. 

The account of object perception that ensues from
these findings is consistent with a general law of parsim-
ony: a system of higher-order knowledge develops over
time from a series of lower-level abilities, in accord with
the structure of its input. Why is parsimony to be
desired? We argue that parsimony is a central pillar of
science: the best explanations are the simplest, and those
that concur with known quantities (e.g. observable
behaviors). This view, of course, is not new (e.g. Morgan,
1903). As discussed previously, there is consistent evid-
ence that neonates have clear visual preferences (Slater,
1995). They direct attention in particular to salient edges
and motion, and thereby gain experience with two kinds
of visual information that are especially important in
parsing the optic array (Johnson, 1997). This is exactly
the right learning environment from which an early abil-

ity to segment figure from ground could progress to an
ability to perceive partial occlusion. From there, more
sophisticated percepts emerge, such as the ability to rep-
resent objects while fully occluded, but these percepts
too are fragile initially (Johnson, Bremner, Slater,
Mason, Foster & Cheshire 2002; Johnson, 2000, 2001).
Such an account does not rely on the positing of innate
knowledge in infants to explain the development of
object percepts. Our models are consistent with this
account. They implement an initial sensitivity to visual
information (that has been shown to support veridical
responses to partly occluded objects). They then show
how these visual cues can be combined to produce a
representation of the ambiguous state of a partly
occluded object: a representation that was not present in
any form prior to experience with the environment. 

It might be argued that the network has not actually
acquired any new representation of unity because there
was a set of ‘unity’ nodes present from the onset (i.e. the
output units that we labeled externally as corresponding
to unity). It is true that this is a network with a fixed
architecture, and therefore a predetermined number of
representational nodes (see Mareschal & Shultz, 1996
for a discussion of networks with a variable number of
nodes), but we believe that the network has nevertheless
acquired a new level of representation. The output is
initially not linked to any perceptual input. At this early
stage, although we are labeling the output as ‘unity’, it
has no semantic content because it is not grounded in
any perceptual experience and consequentially cannot be
used to refer to any event in the environment. This is
followed by a stage in which the output is linked to cer-
tain perceptual cues that lead the network to respond to
the ambiguous stimulus in Figure 1a as though it were
caused by two broken but partly occluded rods. At this
stage the nodes have acquired semantic content that is
grounded in perceptual input and leads them to classify
ambiguous events as ‘not unified’. In other words, the
network now has a representation of what is unified and
what is not unified, although this representation differs
from the normal adult representation. Finally, at the end
of training, the unity output nodes have become associ-
ated to yet another set of perceptual cues. The response
is still perceptually grounded (and therefore can be used
to refer to something in the environment). However, the
semantic content of the response has changed. Now, the
network’s unity response when presented with an ambi-
guous stimulus is the same as that of adults, and the
ambiguous stimulus is perceived as corresponding to a
single unbroken but partly occluded rod. Within the
constraints imposed by the limited perceptual cues avail-
able, the network’s representation of ‘unity’ has acquired
the same semantic content as that of adults.
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The importance of parsimony in theory building is
also underscored by considering that the design of the
visual system is matched to the statistics of the visual
environment. That is, the information processing strategies
employed by the visual system exploit structure inherent to
natural visual scenes (Field, 1999a, 1999b). These strat-
egies allow for vision (and, presumably, other sensory
systems) to capitalize on redundancies in the stimulus
input to focus on areas of contrast and change (cf. Marr,
1982). It seems likely, therefore, that visual development
will also concur with input from the visual environment.

How well does model performance match 
human performance?

The models were designed to produce one of three out-
puts: perception of object unity, perception of disjoint
objects, or an indeterminate response. The networks’ ini-
tial responses indicated perception of disjoint objects in
all portions of all events. This strategy was not built into
the models, but was acquired very quickly via the avail-
able learning mechanisms. Performance improved with
the emergence of unity percepts on the ambiguous por-
tions of those events in which unity was present, but not
directly perceivable. Over the course of learning, the net-
works determined which cues and which cue combina-
tions were most reliably associated with unity.

The event in Figure 1a is truly ambiguous in that there
is no necessary or sufficient reason to infer that it arises
from an occluder and either a single, partially occluded
rod or two partially occluded rods that happen to be aligned
and moving together. An unbiased rational agent would
be unable to decide whether the rod was broken or not.
This is not the case for humans, however. As noted pre-
viously, neonates perceive this stimulus as arising from two
rods, whereas 4-month-olds and adults tend to perceive
it as arising from a single rod. These responses imply
that both newborns and 4-month-olds are endowed with
‘inductive biases’, or information processing constraints
that bias a system to select preferentially one response
among a set of equivalent outputs (Mitchell, 1997). Note
that neither response is ‘correct’ in the sense of being a
uniquely valid inference from the information available
in the stimulus, because both are equally compatible
with the available data. An important implication of our
models is that these inductive biases do not have to be
built in. Inductive biases can arise  –  and change – as
a result of experience with a particular environment.

The incipient tendency to perceive disjoint objects, the
gradual development of unity percepts and the discovery
of multiple cues to unity are strikingly similar to human
performance. Initially, the networks used their existing
perceptual skills to segregate the events into constituent

object surfaces based on what was directly perceived,
although these segregation skills were not pre-specified.
After repeated exposure to events in which objects were
seen first fully visible and then underwent partial occlu-
sion, percepts of unity emerged that matched human
adult percepts. The use of cues to perceive unity changed
with exposure. Both these latter patterns of performance
are also observed in infants. Overall, then, the progres-
sion from responding to partly occluded objects as
disjoint objects to perceiving object unity characterizes
both our connectionist models and human infants,
implying common developmental mechanisms. This
lends plausibility to our account of these mechanisms as
arising from an early perceptual competence (but see
footnote 2 again) and experience viewing objects as they
become progressively occluded and disoccluded.

The models employed simplistic perceptual modules
and experienced a relatively impoverished environment
(as compared to the natural world). Thus, it is unlikely
that specific predictions about infants’ reliance on par-
ticular cues can be derived from these models. This is
because the infants experience a much richer environ-
ment than the networks did. Nevertheless, the models
embodied the computational principles by which human
infants might learn. They successfully show how associ-
ative mechanisms can be used to combine perceptual
cues in such a way as to derive a unity response similar
to that of adults, from a perceptually ambiguous event.

It is also notable that early in training, the models
made no use of perceptual information in making a
response. After 2,000 epochs, however, there was a relat-
ively sudden emergence of cue use whose basic pattern
remained largely unchanged throughout development.
That is, there was a sudden shift in performance,
strongly resembling a stage (cf. Elman et al., 1996).

Of course, there are also important differences in how
these connectionist models and humans use information
to parse scenes containing partly occluded objects. Our
models were not intended to tell us about which cues
infants use to perceive unity (indeed our selection of
input cues was driven by previous experimental studies
with infants). They were designed to test the prediction
that perceptual sensitivity and association lead to a
response bias towards ambiguous stimuli that has been
interpreted as evidence of object knowledge. Texture, for
example, was not used by the models as a depth cue, as
is the case for human adults and infants (Gibson, 1979;
Johnson & Aslin, 1996, 2000).

What do we mean by knowledge?

Computational models force the user to be explicit about
what is meant by the term ‘knowledge’. In the present
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context, knowledge of object unity is inferred from the
models’ and from the infants’ behavior. In the models, this
knowledge is embodied in the connection weights between
units in the networks, and no propositional or other explicit
representation of the task is required. The weights inter-
nalize the time-averaged co-occurrence of  different fea-
tures in the environment. Our models suggest that this
representational format seems sufficient to account for
performance on the partly occluded object tasks depicted
in Figure 1. Moreover, what has been described as a
process of ‘perceptual inference’ to account for the beha-
vior of 4-month-olds is explicitly instantiated here, through
the propagation of activation in a neural network and
not through the syntactic manipulation of propositions.

What is innate and what is learned?

As noted previously, our models were not intended to
explain visual development, nor should they be taken as
a general model of how all knowledge is acquired.
Rather, they are best viewed as an existence proof: object
knowledge can arise from an interaction of lower-level
perceptual skills and learning, if  given the proper experi-
ence in a structured environment. 

Is our model purely empiricist? The answer is a clear
no, because the starting point for development was
specified. Neither, however, is it purely nativist, because
something completely novel arose during training: object
knowledge apart from the original perceptual sensitivit-
ies. Ultimately, any innate vs learned dichotomy fails to
provide explanatory power in addressing developmental
issues. We argued previously that our models are consist-
ent with a general law of parsimony, because they are
consistent with known facts: infants are born with pref-
erences for important visual cues, they learn and they
live in a structured visual world. But this approach does
not view the developing human as a ‘black box’ or tab-
ula rasa in which internal mechanisms are unobservable,
and therefore unimportant. On the contrary: under-
standing the internal structure of our models, during
and after development, is crucial for the interpretation
of their performance. 

Grounding our discussion in an implemented com-
putational model makes explicit the requirements for a
learning account of perception of object unity. We have
shown that, given a set of seven perceptual cues, a simple
associative learning system can acquire a bias to perceive
Figure 1a as a single partly occluded object. To push a
learning argument further, one would need to identify
under what set of constraints these perceptual modules
would emerge. In this way, real progress can be made in
identifying what information needs to be available to the
system for learning to get off  the ground.

The models in this paper demonstrate how the percep-
tion of unity could be mediated by available information
in the absence of direct evidence. We do not wish to
claim that there is anything special about unity in this
case: it is relatively straightforward to generalize this
account to other perceptual cues. Any one of these cues
could be mediated by indirect associations with other
cues. A more complex network could be devised, in
which, if  one cue could not be computed, its association
with other computable cues could be used to derive a
value for that cue. However, whether the resulting
network would be computationally tractable is an open
question.

Appendix: Details of the model architecture

The networks were designed with an input layer (the
perceptual modules), an output layer (the response
units) and a layer of hidden units between the perceptual
modules and the response units. They were exposed to a
simple perceptual environment. There were no direct
connections from the perceptual modules to the out-
put; all cue relations, therefore, had to be encoded across
the hidden units. Networks began with random initial
weights (mean = 0.0, range = 0.01). During training, the
weights between the perceptual modules, hidden units
and the output units were updated at every epoch (i.e.
image presentation) using the backpropagation
algorithm4 (Chauvin & Rumelhart, 1995) with a learning
rate of 0.5, momentum of 0.03. The memory parameter
(µ) was set to 0.4. A network’s performance was tested
by presenting it with events consisting of the ambiguous
segment of the trajectory only. In other words, during
testing, the networks could not use information avail-
able in the unambiguous segment of the trajectory to
derive unity.

Output representations

The unity response was coded across two linear output
units with activations ranging across the interval (−1,
+1). An output activation pair of (+1, −1) signified that
the surfaces were unified, and (−1, +1) signified that the
surfaces were not unified. A response of (+1, +1) or (−1,
−1) was interpreted as indeterminate.

4 We have no necessary commitment to backpropagation. Any con-

nectionist algorithm that implements gradient descent search in

multi-layered networks could be used equally well, such as the leabra

algorithm (O’Reilly, 1996, 1998).
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Input representations

The input consisted of a 196-bit vector mapping all the
units on a 14 × 14 grid. In the center of the grid was a
4 × 4-unit occluder. All units corresponding to the posi-
tion of the occluder and visible object parts were given
a value of 1. When background texture was present, all
other units on the display were given a value of  0 or
0.2. Units with values of 0.2 corresponded to positions
on which there was a texture element (i.e. the dots seen
in Figure 4). Each event consisted of  a sequence of
14 snapshots in which the object moved progressively
across the display. 

The perceptual modules

The motion detection module

This module compared the current image to the previous
image (Figure 11a). If  there was a difference between the
images, the presence of motion was computed. Input
during a particular time step (e.g. ‘time1’) was copied to
a memory buffer (Prev.Input), and input from the next
time step (‘time2’) was copied to a second module
(Curr.Input). A layer of hidden units (Diff.Input) within
the module computed the step by step difference
between Prev.Input and Curr.Input. The output unit
then summed the activity across the hidden layer, and
output 1 if  there were any non-zero values or 0 if  there
were no non-zero values.

The co-motion module

This module split the display into two halves and com-
puted whether there was motion simultaneously in the
upper half  and the lower half. To accomplish this, two
motion detection modules (described previously) were
employed, one devoted to each half, and their outputs
fed to a third module that determines whether both are
active concurrently. If  both were active, the output unit
output 1, or 0 otherwise. 

The common motion module

This module split the display into two halves and com-
puted whether there was the same motion in the upper
half  and the lower half  (Figure 11b). A Diff.Input vector
was generated for both the top and bottom halves of the
display (as in the motion detection module described
previously). Recall that the contents of Diff.Input were
the current input minus the input at the previous time
step. Features that had not moved cancelled out and left
a value of 0 at their associated positions in Diff.Input.

Positions that were newly occupied with the current
input were provided with positive activation and posi-
tions that were occupied at the previous time step, but
were no longer occupied, were provided with negative
activation. The direction of motion was determined by
observing the relative position of positive and negative
activation. A Direction Buffer computed a weighted sum
of the negative and positive activation (in which loca-
tions along the horizontal retinal axis were increasingly
weighted from left to right) for each of the top and bot-
tom halves of the display. A positive sum indicated that

Prev.Input Curr.Input

Diff.Input

Output

Retinal input

A

Direction,
bottom

Direction buffer

Output

Motion detector,
bottom

Motion detector,
top

Direction,
top

B

Texture.Filter

Texture.Sum

Output

Retinal input

Prev.Texture.Sum

time delay linkC

time delay link

Figure 11 Architecture of three perceptual modules. A. 
Motion module. B. Co-motion module. C. Texture module. 
See text for details.
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the object was moving to the right, a negative sum indic-
ated that the object was moving to the left, and 0 indic-
ated that there was no motion. Comparing these two
values for the top and bottom halves of the display
allowed the module to compute whether there is the
same kind of motion in the top and bottom halves of the
display. If  there was common motion the module output
1, or 0 otherwise.

The parallelism module

This module computed an approximation to the tangent
of the angle that the object’s axis of principle length
made with the horizontal, for both the upper and lower
halves of the display, and compared these two values. A
Cartesian coordinate system was set up by weighting the
columns and the rows of the display according to the
position of the row and column with respect to an origin
at the center of the display. The X- and Y-components
of object segments in the upper and lower halves of the
display were computed within this coordinate system.
The ratio of the Y-component over the X-component
was used as an approximation to the tangent of the
angle. If  the tangents in the top and bottom halves were
equal, the module output 1, or 0 otherwise.

The relatability module

This module computed whether the extension of the axis
of principle length for objects in the upper and lower
halves of the display would intersect. The display was
split into two halves. The bottom half  was copied on to
the top half  and the occluder values subtracted. If  axes
converged while moving up the display, then the objects
were relatable and the module output 1, or 0 otherwise.

The texture module

This module summed the number of texture dots in the
input image and compared it to the number of dots in
the previous image (Figure 11c). If  there was a difference
in the number of dots in the two images, then there had
been accretion or deletion of texture elements. The input
was passed via one-to-one connections to a layer of
hidden units (Texture.Filter). A unit in this layer was
activated if  its corresponding position on the display
contained a texture element. The output of  Texture.
Filter was then passed on to a single unit (Texture.Sum)
that summed the activation across the whole layer.
Because each unit in Texture.Filter had an activation of
1 if  there was a texture element, the sum of all the units
was equivalent to the number of texture elements pre-
sent at that time step on the display. This value was

passed into a memory buffer (Past.Texture.Sum) for use
at the next time step. The values of Past.Texture.Sum
and Texture.Sum were passed to an output unit that
computed the difference between the two. The output
unit responded with a 1 if  the difference was not 0 (i.e.
there had been texture accretion or deletion), or a 0 if
there was no difference (i.e. no background texture was
present).

The T-junction module

This module focused on the area immediately above and
below the edge of the occluding screen and computed
whether there was a gap along these edges. If  there was
a gap, the absence of T-junctions was computed and the
module output a 0, or a 1 if  there was no gap.

The cues detected by the perceptual modules were
primitives, and other cues were computed as combina-
tions of these primitives. For example, collinearity was
indicated by positive responses from both the parallel-
ism and relatability modules. Parallelism and relatability
are more primitive cues than collinearity because the lat-
ter cannot be computed without the former, whereas the
converse is not true (i.e. both parallelism and relatability
can be computed independently of collinearity). Also,
co-motion, common motion, parallelism and relatability
can only be computed when there is more than one pos-
sible object present (i.e. when there are two objects in
either an ambiguous or unambiguous situation). 
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In recent years an exciting innovation has occurred in
the study of early development. Connectionist models
have begun to appear on a variety of aspects of infant
perception, cognition and language. These models have
included simulations of object permanence (Munakata,
McClelland, Johnson & Siegler, 1997); categorization
(Mareschal & French, 2000); causal perception (Chaput
& Cohen, in press); early word learning (Schafer &
Mareschal, 2001); and simple rule learning (Shultz &
Bale, in press). Continuing in this tradition, Mareschal
and Johnson now present a connectionist model of a
cornerstone in infant visual perception, the perception
of object unity. This is an ideal topic to model for a
number of reasons: as the authors note, the perception
of object unity is subject to a continuing theoretical
debate about the role of innate core knowledge versus
early experience and learning; there is also a wealth of
empirical evidence with infants upon which to draw; and
some of  that empirical evidence suggests a develop-
mental change in how occluded objects (or object parts)
are perceived.

Mareschal and Johnson’s model includes several
attractive features. It is essentially a constructive model
that builds the percept of one versus two objects from a
set of lower-order perceptual cues. Most, if  not all, of
these perceptual cues (e.g. the presence of motion, tex-
ture or T-junctions) make sense, and they are probably
available to young infants. The model learns from envir-
onmental experience and generalizes to novel instances;
it also produces some, albeit weak, evidence for a devel-
opmental change. 

Nevertheless, the present model, like many earlier con-
nectionist models, serves mainly as an existence proof,
meant to demonstrate that such a system can learn some
concept. In that sense it provides a logical counter-
argument to postulations of certain types of innate core

knowledge. But the field has now advanced to the point
where it is important to go beyond existence proofs and
attempt to model more closely how these concepts are
actually learned by infants and how developmental
changes in these concepts actually occur. 

We too are working on a connectionist model of
infant cognitive development (Chaput and Cohen, in
press), and we would be the first to admit that our own
attempts influence our view of other models. Neverthe-
less, based on this experience we would like to raise a
few general issues we have confronted that also apply to
the Mareschal and Johnson model. These are (1) choice
of a connectionist architecture, (2) modeling habituation
vs long-term experience, (3) the realism of the training
environment, and (4) modeling developmental change.

A growing trend in connectionist models of infant
development is the use of architectures that are unsuper-
vised and self-organizing. We agree with this trend, as it
avoids many of the problems associated with the use of
an external ‘target’ against which the model’s output is
compared. It is unclear where, in infants, a target would
come from, or how such a target would be chosen in a
consistent way throughout development and across
domains. Auto-associative networks answer this ques-
tion quite nicely by making the target identical to the
input. In our own work, we avoid the question entirely
by using Self-Organizing Maps (Kohonen, 1997), which
make no use of targets and are, thus, unsupervised.
Although Mareschal and Johnson claim that their model
is unsupervised, their use of an external target, via the
‘Direct Route’, makes their model supervised by defini-
tion. And the source of this target is not actually the
input vector (as it would be in an auto-associative net-
work) but the result of  an algorithmic manipulation of
environmental features not present in the input vector.
So their model is not really self-organizing, either. In

Address for correspondence: Leslie B. Cohen, Department of Psychology, Mezes Hall 330, University of Texas, Austin, TX 78712; e-mail:
cohen@psy.utexas.edu or chaput@cs.utexas.edu
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spite of  these possible criticisms, to us, the specific
architecture of the model is less important than the
results it produces.

Most infant experiments employ a habituation tech-
nique to explore perceptual or cognitive development.
This includes the research on object unity cited by Mare-
schal and Johnson; research they presumably are trying
to model. But habituation can be used either to assess
short-term learning or to probe existing knowledge
structures that are the result of long-term experience. We
believe it is important for the model to be explicit about
these two types of learning, as our model is. The distinc-
tion is unclear in the Mareschal and Johnson model. If
their training is meant to represent short-term habitu-
ation, then it is unlike what infants have received in actual
experiments since it includes exposure to an unoccluded
event in addition to an occluded event. On the other
hand if  the training is meant to represent long-term
experience, then it is unclear how habituation is repres-
ented in their model at all.

One can also ask how realistic or artificial that long-
term training is. We believe, as Mareschal and Johnson
do, that infants are able to learn concepts by processing
information they receive from the environment. But we
have doubts about the plausibility of the environment
provided in Mareschal and Johnson’s models, especially
Model 2. The authors posit that an infant’s bias to per-
ceive a partially occluded rod as two separate rods is
the result of an ‘inductive bias’ which is present, not only
in 4-month-olds, but also in neonates. They go on to
argue that this ‘inductive bias’ comes about ‘as a result
of experience with a particular environment’. Earlier,
though, they note that Model 2 prefers the two-rod
response ‘because most of the events in the learning
environment arise from two objects’. So we wonder if
they might be ‘giving away the answer’ by skewing the
environment in such a way as to facilitate a certain out-
come. Our intuition is that an infant’s environment is
more likely to contain whole rods than co-moving, par-
allel, relatable rod segments. 

Finally, Mareschal and Johnson’s model is only one
part of a much larger story of cognitive development,
and we would be interested in seeing if  their model can
cover more of this story. Specifically, with regard to
object unity, Eizenman and Bertenthal (1998) performed
a similar bar-and-occlusion study with infants; only
instead of moving the bar laterally behind the occluder,
they rotated the bar. Rotation made the perceptual job
more difficult for the infant, and they found that 4-
month-olds tended to regress to a two-bar bias, whereas
6-month-olds finally regained the single-bar bias. Their
results suggest the presence of an additional transition
in the development of object unity, and we are curious

to see if  Mareschal and Johnson’s model can capture this
transition as well. 

We also believe the set of developmental transitions
found in infants’ perception of object unity represent but
a single example of a more general set of principles that
appear to be at work across many domains throughout
early cognitive development (Cohen, 1998; Cohen &
Cashon, 2001). These principles provide a constructivist
view of cognitive development amenable to connection-
ist modeling. Our own work (Chaput & Cohen, in press)
is an initial attempt to address this broader picture with
a single connectionist architecture that adheres to these
principles.

We hope these comments are taken in the positive way
they are intended. We believe the authors’ approach,
along with the other approaches we have mentioned,
such as auto-associative networks, cascade correlation
models, or our own hierarchically arranged self-organiz-
ing maps, hold considerable promise for explaining the
development of early perceptual and cognitive ability.
We are pleased to see that connectionist models are pro-
gressing beyond existence proofs and attempting more
complete and potentially compelling explanations. In the
end these models will be evaluated by more than their
ability to simulate existing empirical data. They will also
be required to generate new developmental predictions
that are then confirmed empirically. Once they reach that
stage they clearly will be making a major contribution to
our understanding of early perceptual and cognitive
development.
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The modules behind the learning

Gary F. Marcus

Department of Psychology, New York University, USA

Sometimes the most interesting part of a paper turns out
to be buried in its appendix. The main part of Mareschal
and Johnson’s paper is a defense of the idea that the
notion of object unity might be learned. But while it
may be true that the model that forms the crux of their
argument captures some aspects of object unity, careful
inspection reveals that learning plays but a minor role in
the story that is told here. The appendix reveals that
most of the machinery here is actually innate.

When looked at closely, the appendix reveals some-
thing straight out of classical cognitive science, some-
thing that even Jerry Fodor could love. What really
makes the model tick is a set of seven innately given
perceptual analyzers – each of which is pre-wired to do a
fairly sophisticated bit of domain-specific computation,
in a way that is entirely informationally encapsulated.
For example, the texture module depicted in Figure 11c
counts how many texture units are visible and compares
that to how many texture units were visible in the previ-
ous time step, yielding a one if  the number of texture
units has changed, a zero if  it has not. Nothing inter-
active here; and nothing learned either. Similarly, the
module depicted in Figure 11a tests for object motion
by comparing the current contents of the retina with the
contents of a buffer that contains a cached copy of the
retina’s contents at the previous time step. Again, noth-
ing interactive, nothing learned. But to say that some
parts of the architecture are neither interactive nor
learned is not an insult – instead, it is a compliment: it is
how I think things really are: newborns probably do

come to the visual world with a wide array of sophistic-
ated innately wired perceptual analyzers.

Seen in this light, Mareschal and Johnson’s overall
discussion of the model is underemphasizing a critical
component. It is true that the model does learn some-
thing, but what it learns is actually the relation between
these complex pre-wired perceptual analyzers and an
innately given concept of unity: the model learns how an
innately given concept of unity correlates with particular
cues that are the output of the perceptual analyzers.1

A crude way to put it is that the complete model has
on the order of a thousand connections,2 out of which only
18 are adjusted on the basis of experience. Experience is
an important component in the organization of the model,
but the vast majority of the model’s connections are
innately wired, and that fact needs to be taken seriously.

Address for correspondence: Department of Psychology, Room 306, 6 Washington Place, New York University, New York 10012, USA; e-mail:
gary.marcus@nyu.edu

1 In the current model the output units innately represent unity versus
non-unity, doing so prior to experience on ‘nonambiguous’ displays.
Of course, as Mareschal and Johnson rightly note, footnote 2, the fact
that a perceptual analyzer is functioning at the time of testing doesn’t
mean that it is hardwired, but to minimize the amount of innate
machinery a theorist would need to show a way in which perceptual
analyzers themselves could be learned, something that has never been
done. A related point is that Mareschal and Johnson’s appeal to ‘direct
perception’ is misleading – the world doesn’t tell us how many objects
are out there – what Mareschal and Johnson are calling direct percep-
tion is actually the output of a complex (and here unlearned) computa-
tion. (See also discussion in Marcus, 1998.)
2 There is not enough information given to calculate this number pre-
cisely, but I note that each of the seven perceptual analyzers has at least
196 connections, all pre-wired.
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What I think is being left out of connectionist models
of development is the role of genetics in helping to sculpt
the mind (Marcus 2001a, 2001b). Some of the brain is
calibrated or tuned on the basis of experience, but if  the
brain is anything like the rest of the body, we can expect
mechanisms of gene expression to play an important
role in brain development. As neuroscientists Law-
rence Katz, Michael Weliky and Justin Crowley (2000)
recently put it: ‘The current emphasis on correlation-
based models, which may be appropriate for later
plastic changes, could be obscuring the role of intrinsic
signals that guide the initial establishment of functional
architecture.’

Some of the structure of the brain is learned, but it
seems certain that some of it simply grows under gen-
etic guidance, in the absence of experience. We won’t
understand the exquisite interplay between the innate

and the learned until we take both sides of the equation
seriously.
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Modeling infants’ perception of object unity: 
what have we learned?

Yuko Munakata and Jennifer Merva Stedron

Department of Psychology, University of Denver, USA

Mareschal and Johnson have chosen well by exploring
infants’ perception of object unity through connectionist
models. Object unity is a rich domain, with a clear devel-
opmental time course established through systematic
testing from birth through the first several months of
life. Connectionist models provide a powerful tool for
exploring the learning mechanisms and environmental
input that may contribute to infants’ developing abilities
to perceive object unity. Mareschal and Johnson’s model
simulates infants’ progression from perceiving partly
occluded objects as disjoint to perceiving object unity.

However, for models to advance our understanding in
any domain, they must do more than simulate data; they
should provide insight into the processes underlying the
observed behaviors. In this case, the key questions are:
Based on the model, what have we learned about how
infants perceive object unity? What have we learned
about how this ability develops? The current model may
provide a stronger answer to the second question (at a

very general level) than to the first. The model develops
by learning which environmental cues are most strongly
associated with single objects, and then relying more
heavily on those cues in perceiving object unity. This
general approach seems promising given that infants
pick up on regularities in the environment (e.g. Haith,
Hazan & Goodman, 1988; Saffran, Aslin & Newport,
1996), so that they might be able to use such information
in learning to perceive object unity.

As elaborated below, however, several aspects of the
model’s processing do not seem to map on to infant
processing (see Table 1). These discrepancies pose a chal-
lenge to the model’s ability to inform us about how infants
perceive object unity and how this process develops.

Bias
After the models learn to perceive object unity, they
become biased toward unity. That is, they are biased to
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activate the ‘one object’ output unit in the absence of
any input. Such a bias might suggest that when we open
our eyes after closing them, or when we enter a new
room, we should be biased to expect to see one object
rather than two. It seems unlikely that such a bias sub-
serves infants’ (or adults’) perception of object unity.
This raises the questions of why the models exhibit this
bias, and how relevant this solution for perceiving object
unity is for infants.

Effect of visual features

Motion and background texture help infants to perceive
object unity, but hurt the model’s ability to do so. Both
of these findings were explained as idiosyncrasies of the
network’s training environment; motion and changes in
background texture happened to be more associated
with disjoint objects in the network’s environment. The
model picked up on this regularity, and so had more
difficulty perceiving object unity in the presence of
motion and texture. This is a clear explanation of puz-
zling behavior in the model. However, if  training idio-
syncrasies are to blame for the model’s failure to
simulate certain aspects of the behavioral data, how can
we interpret the model’s successes in simulating the beha-
vioral data? That is, how can we distinguish whether
such successes reflect processing mechanisms and envir-
onments that are relevant to infants, or whether these,
too, result from idiosyncrasies in the training environ-
ment of the networks?

Effect of environment

Models ‘raised’ in relatively enriched learning environ-
ments (consisting of eight different events) developed
more general knowledge of object unity than models in
relatively simple learning environments (consisting of

four events). Such effects of environment might be inter-
esting to explore further in connectionist models, given
that animals reared in deprived environments show clear
behavioral and neural impairments (Greenough, Black
& Wallace, 1987; Wiesel & Hubel, 1963). However, the
models raised in the relatively enriched learning environ-
ments exhibited some very strange behaviors, raising
questions about the processes underlying their percep-
tion of object unity. For example, these models had great
difficulty correctly perceiving unity in Event 1, which
was the most simple event (e.g. containing all of the cues
that signal unity for infants) and was part of the training
set. In contrast, models in the deprived environments
showed much better performance with this simple event.
Further, the models in the enriched environment suc-
cessfully perceived object unity in more complex events
(e.g. Events 5 and 6) well before perceiving unity in the
simple event. This strange pattern of performance sug-
gests that the models in the enriched environment
learned to perceive object unity in an anomalous way.
Thus, although the global performance measures tell a
compelling story (enriched environments support better
learning), the detailed patterns of performance in the
models raise questions about how meaningful their
behaviors are.

Target signal

The models learn object unity via a decaying target sig-
nal; after an object is occluded, this decaying target sig-
nal specifies that the partially occluded object is a single
object. It is not clear where this object unity target signal
would come from in infants (in contrast with other
backpropagation networks that use continual input from
the environment as the training signal; e.g. Elman, 1990;
Munakata, McClelland, Johnson & Siegler, 1997). The
fact that infants habituate (and thereby demonstrate
memory) is tenuous evidence for positing the existence

Table 1 Apparent discrepancies between models and infants in the processing of object unity

Component of perceiving object unity Models Infants

Bias Favor unity Unlikely

Effect of visual features
Texture Hurts Helps
Motion Hurts Helps

Effect of environment Enriched causes problems
with simple events

Unlikely

Target signal Decays after object 
partly occluded

No apparent effects of 
delay on object unity
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of an activation-based target signal specifying object
unity. In fact, the existence of such a target signal, pre-
sent from the model’s ‘birth’, might be viewed as more
in line with nativist than empiricist approaches.

Further, because the target signal decays, it seems
likely that even mature models would become less and
less confident over time that a partially occluded object
is a single object. That is, the models would activate the
unity output unit less and less over subsequent occluded
time steps. This does not seem to map on to anything
in infants (or adults). Both infants and adults can per-
ceive the unity of an occluded object even without first
seeing the object fully visible, suggesting that the delay
between fully visible and partially occluded views is not
a critical factor in humans in the way that it may be in
the models.

Conclusions

All models involve simplifications that one can challenge
(in terms of what they map on to in the infant, in the
environment, etc.). Thus, the evaluation of models
should not be viewed as simply a black-or-white pro-
cess, where good models do not require simplifications
but bad models do. Instead, the limitations must always
be balanced with the insights a model may provide. In
this case, the primary strength of the model seems to lie
in its demonstration of the ability to use regularities in
the environment to learn to perceive object unity. How-
ever, it is already well known that connectionist models
can learn statistical regularities from their environments
(Rumelhart & McClelland, 1986; O’Reilly & Munakata,

2000). The more useful demonstration would be to show
how the model provides insights into the details of how
infants perceive object unity and how this ability devel-
ops. It is unclear what these insights would be, given the
numerous apparent discrepancies between the models
and infants in their perception of object unity.
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Teleology in connectionism

Linda B. Smith

Department of Psychology and the Program in Cognitive Science, Indiana University, Bloomington, IN, USA

Theorists as diverse as Baldwin (1906), Darwin (1877),
Piaget (1952) and Werner (1957) viewed development as
a process of ‘getting better’ – as a generative force for the
improvement of mankind. In the contemporary literature,

development is also seen as more-or-less steady progress
toward a goal, toward the adult standard or toward
functional and adaptive behavior. We as developmental
theorists know where development is going, or where it
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ought to be going. But does the developing organism
know? Does the infant in some real sense represent the
endstate? According to nativist-rationalist accounts, they
do. This is an honest and direct stance. However, the
danger of teleology is that it worms its way into theories
meant to oppose the rationalist view.

Mareschal and Johnson’s paper is admirable on many
grounds. They provide an elegant and insightful review
of the data and make a compelling argument that object
unity is learned. Most specifically, the conditions under
which infants interpret a partly occluded object as a uni-
tary whole change with development. Further, there are
multiple co-occurring cues that predict unity – motion,
co-motion, common motion, relatability, parallelism,
texture and T-junctions. Thus, Mareschal and Johnson
argue, by learning these cues, infants could learn to per-
ceive object unity despite occlusion. All that is needed
for learning is right there in the everyday experiences of
infants. As a whole object in full view moves and
becomes partially occluded and then back into full view,
the infant can learn which cues correlate with unity and
thus come to see partially occluded forms as unitary.

 Mareschal and Johnson then take their argument one
step further and present a connectionist simulation to show
the plausibility of this account. The simulations are
revealing about how and in what ways specific cues
might be learned. Moreover, the simulations are likely to
lead to interesting future experiments. The authors are
to be congratulated on this effort; much more formal
modeling of developmental phenomena is needed. But,
the real value of formal modeling is that the formalisms
(unlike explanations couched only in words) are brutally
honest. The equations and algorithms leave the theorist
no place to hide; they make the mechanism explicit. In
the present case, the mechanism is pre-knowledge about
the very thing to be learned, object unity. The network
knows at the start that object unity is the goal, and it
knows what unity is. The learning mechanism is highly
constrained and is solely dedicated to learning about
the motion patterns that co-occur with objects already
recognized as coherent wholes. In this way, the model is
an implementation version of Kellman and Spelke’s
(1983, p. 521) rationalist idea that ‘humans may begin
life with the notion that the environment is composed of
things that are coherent, that move independently of one
another, and that tend to persist . . .’.

An implementation on the rationalist side 

Where do our rich understandings of objects, causality,
space, number, time come from? Rationalists look at the
diversity of human knowledge and the certainty with

which children acquire it and conclude that the diversity
is there to begin with, that there are special mechanisms,
operating in accord with specific principles, dedicated to
specific domains (e.g. Spelke, Breinlinger, Macomber &
Jacobson, 1992). Two main ideas underlie this rationalist
view (see Fodor, 1983): 

1. What needs to be acquired is unique to each
domain. Thus, the mechanisms that guide learning
in each domain must be domain specific, pertinent
to the specific content and task in that domain.

2. One cannot get something from nothing, and thus
nothing truly new can be learned. What is to be
learned must be pre-specified.

Mareschal and Johnson’s model adheres to these two
rationalist ideas. 

 First, the features to which the model is sensitive are
all relevant to unity. Motion, co-motion, common
motion, relatability, parallelism, texture and T-junctions
are pre-selected and bundled into this one dedicated
device. There are no features such as distance, or num-
ber, or velocity, or shape malformation, or contact that
are not relevant to unity but are relevant to learning caus-
ality, space, number or object kind. Thus, the model
accords with the first main idea of  rationalism – a
dedicated mechanism that is highly constrained and pre-
built to learn just one thing.

Second, the device knows what unity is at the start; all
it learns is the specific motion patterns during occlusion
that co-occur with a unitary unoccluded object. More-
over, the device can only learn whatever cues predict
unity; it cannot learn anything else. This derives from
the very nature of the learning algorithm. The network
uses an error reduction learning algorithm (backpro-
pagation). This algorithm requires that the learner know
what is to be learned. This algorithm works by minimiz-
ing the distance between the actual output on any trial
and a target output. In this case, the target output is the
perception of the unity of the object – its coherence as a
whole – when unoccluded. This network does not learn

Figure 1 Young infants fail to recognize a ball as an individual 
entity when it is placed on top of another object.
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to perceive unity. It is given the recognition of unity, the
value that this matters, all the potentially relevant fea-
tures (and no irrelevant ones) and the goal of predicting
the unity. The target – the perception of unity – defines
what is to be learned and does all the work. With this
learning algorithm, the network knows what needs to be
learned before it does any learning. In this way, the
mechanism of development is the evaluation of how
close development is to a pre-specified endstate. Thus,
the model adheres to the second rationalist tenet; noth-
ing really new is learned.

Unity is not all there is 

Piaget (1952) observed that a young baby’s visual track-
ing of an object or an older baby’s reach for an object
could be disrupted by placing the object on top of or
behind another object. According to Piaget, an object
such as the ball in Figure 1 ceases to be perceived as a
separate object when it is placed on top of another. This
model as it stands would make the same prediction,
since it is designed to perceive unity; without motion,
the ball and block are one. But unlike children, Maras-
chal and Johnson’s model could not eventually learn to
perceive these stationary objects as separate based on
their configural properties alone. Indeed, experiences in
which separate objects are temporarily put together
seem likely to cause real problems for this device. Con-
sider the sequence of events presented in Figure 2. If
these were presented to the network during the learning
phase, what would the network learn? The first step in
the input should specify a unitary whole object and thus
as configured, the network should learn that this pattern
of motion also predicts a unitary whole. With unity as
the pre-specified target of learning, there is nothing else
to learn.

If  we follow the approach of Mareschal and Johnson’s
model, the only way to learn other things is to build lots
of other little dedicated devices prebuilt to learn what
needs to be learned. The problem is that babies have lots
to learn – about objects, about motions, about number,
about causality. If  we follow this approach, we will end
up where the rationalists did, with many, many innate ideas.

Any way out?

Can we get teleology out of developmental mechanism?
Apparently, it is not easy. But it might be easier if  we
dropped the idea that we know what development is for
and that we know where it is going. At the very least,
connectionist modelers might avoid error driven learning
algorithms that pre-specify what is to be learned. 
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We were pleased to see that all commentators agreed
with us on one issue. All four authors argued that com-
putational modeling is a fertile way to push forward
debates in cognitive development. Computational mod-
els are explicit instantiations of information processing
theories. They describe exactly what is assumed to be in
the environment, what is assumed to be ‘built in’, and
some of the mechanisms by which development can
occur. It is precisely because they are ‘brutally honest’
(Smith) that they can push debates forward. By laying
our cards on the table and inviting commentators to
specify what they believe to be wrong with the assump-
tions of our model, we are also requiring them to be
precise about what might constitute the mechanisms of
development of unity perception in infants.

Model building is an iterative process. At each itera-
tion, the model is improved to take account of more
data, or perhaps to correct some invalid assumptions.
Model development is also a means of fostering dia-
logue. Building a model invites those with different views
to participate by expressing their dissatisfaction with a
current implementation. If  the criticism is sufficiently
precise, it becomes an agreed target towards which both
research groups can work, the presumption being that if
a revised model can overcome the obstacle or limitation
highlighted, then the two views will converge. 

We were equally happy to see that the four comment-
ators have engaged with us in this dialogue by highlight-
ing aspects of the model that they endorse, as well as
aspects of the model with which they would find fault.
Of course, models are necessarily approximations (Rum-
melhart & McClelland, 1986; Mareschal, 2001), and
building a model is not the same as building an infant!
As a result, we agree with some of the points made, and

disagree with others. In what follows we will outline how
we might address each of the main concerns.

Nativism through the back door (Marcus, 
Smith and Munakata & Stedron): Is the 
concept of unity somehow innately 
specified in the model? 

No. To be precise, the concept of unity as tested in the
ambiguous displays depicted in Figure 1 (Mareschal &
Johnson, this volume) is not. The model has a pre-
existing feature detector that allows it to differentiate
between the presence of one or two objects when all
portions of the object are visible. Although we have
labeled this as a unity input, it might be better described
as a form of low-level subitization (i.e. discriminating
one from two objects). This ability is presupposed in all
empirical tests of  infants’ unity perception, because it
is required to discriminate between test stimuli (b) and
(c) in Figure 1. If  infants were not able to discriminate
these stimuli, then the empirical results would lose their
meaning. As noted (Mareschal & Johnson, this volume),
even neonates are able to make this distinction (Slater,
Johnson, Brown & Badenoch, 1996).

The models learn, ultimately, how to make this dis-
crimination in a completely ambiguous event, an event in
which the low-level unity feature detector is unable to
compute whether there is one or two objects in the event
because of the partial occlusion. In these cases, the model
learns to generate a prediction about unity on the basis
of other available cues. This mediated response is not
wired in and emerges through interactions with the
environment. Moreover, it allows the network to respond
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to ambiguous events in a manner analogous to human
infants.

Modeling unity (Cohen & Chaput, Marcus): 
What exactly are we trying to model?

We are trying to model infants’ perception of partly
occluded objects. The assumption underlying extant
theories of unity perception is that these percepts, whether
veridical (i.e. adultlike) or not, are formed outside the
laboratory. Cohen and Chaput are correct in pointing
out that the habituation paradigm can tap either learn-
ing during habituation itself, or some pre-existing per-
ceptual or cognitive capacity. Habituation is a tool for
assessing these capacities, a tool that is useful for prob-
ing infants’ responses to the stimuli we present. But it is
hardly necessary for us to model habituation to address
the questions we are asking. We assume that during
development, infants are exposed to both fully visible
and partly occluded objects as well as the transitions
between these views, and we believe this assumption is
captured well in the models.

We are not trying to model the development of the
visual system as a whole. Marcus appears to find fault
with our ‘detection, then utilization’ hypothesis (although
this is not stated explicitly), in that our models begin
with fully functional, encapsulated modules that each
process one attribute of the visual scene. We see this
critique as more of a restatement of our approach than
as a problem. The models begin the process of learning
unity with much of the hardware in place, as does the
human neonate, who is born with a full complement of
cortical neurons (Rakic, 2000). Frankly, we were disap-
pointed with the simplistic presentation of ‘genetics’ as
the principal sculptor of brain structure, and we reject
outright the notion that there is some sort of ‘equation’
or continuum between ‘genetic’ and ‘learned’. This is
precisely the line of  thinking that we hope to expel
from debates about the origins of knowledge, because it
buys us nothing. We want to know about mechanisms,
no matter what they may be. Several mechanisms are
discussed in the chapter Marcus cites that contribute to
visual system development, and these are functional
before the onset of visual experience (Katz, Weliky &
Crowley, 2000). To describe these mechanisms as ‘gen-
etic’, however, is a mischaracterization. Indeed, they
are paradigmatic examples of  the exquisitely intricate
interplay between gene expression, molecular markers
(transcription factors and axon guidance molecules),
plasticity, experience, and so on, that mark all develop-
ment. For example, Katz et al. describe spontaneous
activity of retinal cells during fetal development that

provides correlated structure with which downstream
areas (such as LGN in the thalamus and visual cortex)
may derive patterned connectivities and from which ori-
entation selectivity and cortical topographic mapping
may emerge (cf. Pallas, 2001; Wong, 1999). The crude
mapping, present upon eye opening, is then fine-tuned
with visual experience. There is no obvious place here
where the role of ‘genetics’ begins and ends. 

We are not trying to model all aspects of cognitive
development, such as understanding of ‘causality, space,
time and number’ (Smith). We fully concur with Smith’s
contentions that our model learns ‘just one thing’ and
that ‘unity is not all there is’. Our rejoinder to this criti-
cism is that some narrowness of focus is a feature of any
empirical or modeling investigation. We would go far-
ther, in fact, in noting that the mechanism by which our
models learned is only one possible route to veridical
object perception, and is certainly not the entire story
(see Johnson, 2001). 

Error-driven supervised learning 
(Cohen & Chaput, Smith): Is this really 
a supervised network masquerading as 
an unsupervised network? 

No. It is important to understand the distinction between
backpropagation networks and supervised learning. In
supervised learning, an external agent provides the net-
work with an example of  a correct response (e.g. a
category label or a past-tense morpheme). Unsupervised
networks are designed to self-organize in order to reach
a consistent response in the absence of an external agent
supplying a teaching signal. They come into equilibrium
with their environment according to some constraints
determined by their wiring and/or the specific learning
algorithm. 

Backpropagation is one kind of algorithm for updat-
ing weights in the network. It functions by minimizing
the difference between the network’s output response
and some other signal. In many applications, that other
signal is the target information provided by an external
agent. Thus, backpropagation is often used in a super-
vised training context. However, this does not necessar-
ily have to be the case, and it is not the case with the
present model. Autoencoders are examples of networks
that use backpropagation but do not rely on an external
training agent (Mareschal, French & Quinn, 2000; Jap-
kowicz, 2001). These networks try to minimize the dif-
ference between their output and the original input from
the environment. That is, they are designed to reproduce,
on the output, exactly the same input features that they
have just encountered. As a result, they develop internal
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representations that capture the key feature variation in
the environment. 

Autoencoders are sometimes called ‘self-supervised’
systems, and it may be easier to think of our networks
as ‘self-supervised’ rather than self-organizing. They are
engaged in a process of self-organization (driven by the
autoencoding task) that causes the emergence of  inter-
nal representations that maximize the network’s ability
to predict the features of its particular environment.
Although not a full autoencoder,1 it is self-supervised.
The target signal used to train the weights with back-
propagation is obtained directly from the environment
(as in autoencoder models) or from a decaying memory
trace that is internal to the system.2 There is no external
agent telling the network whether a particular event is
unified or not. Hence, the networks receive no more
information than do infants in real-world situations of
learning object properties.

The inductive bias (Munakata & Stedron, 
Cohen & Chaput): Do our models instantiate 
an inductive bias that in and of itself 
determines correct performance? 

An ‘inductive bias’ is a technical term from the formal
learning literatures (Mitchell, 1997), and refers to any
computational bias that allows the system to select pref-
erentially one from a number of equally probable
options. Both the test stimuli (depicted in Figure 1b and
1c of Mareschal & Johnson, this volume), for example,
are equally likely sources of the ambiguous habituation
event (Figure 1a). There is nothing in the occlusion dis-
play itself that allows an observer to choose between them
rationally. The fact that infants and adults consistently
choose one or the other, however, is evidence that an
inductive bias exists in the computations of their percep-
tual systems. Importantly, that bias appears to change
with age. The bias in neonates leads them to perceive the
partly occluded surface in a rod-and-box display as

arising from two objects (i.e. the rod is perceived as a
disjoint object). The bias in 4-month-olds (and adults),
in contrast, leads them to perceive the partly occluded
surface as arising from a single unified object. 

Note that we are inferring the presence of an inductive
bias from observed behavior only. We have said nothing
about how that bias is implemented or materialized in
the infant’s visual system. Similarly, when we talk about an
inductive bias in the networks’ behavior, we are referring
to their consistent response to an ambiguous event but we
remain silent on the precise mechanisms underlying this bias. 

It is important not to confuse the ‘inductive bias’ of
the system with the ‘bias nodes’ in the network. The bias
nodes are a way of implementing a tuneable firing
threshold in the output and hidden units. This threshold
may or may not be involved in implementing the
observed inductive bias but is not the same thing. Early
in development the ‘bias’ towards seeing the ambiguous
event as composed of two disjoint objects may be due to
the greater proportion of unified events in the networks’
environment, but this is not the case later in training.
The ‘inductive bias’ shifts but the environment remains
constant. Hence, we have not surreptitiously built in the
bias through our training environment.

The higher resting threshold of unity output unit in
‘adult’ networks translates into the prediction that adults
and 4-month-olds would be slightly quicker to identify a
single unified object than two disjoint objects, but that
the converse would hold for neonates. Of course, a higher
resting threshold for the unity node does not imply a
change in the adult’s (nor the 4-month-old’s) percept in any
way because as soon as a stimulus appears, other percep-
tual cues (e.g. T-junctions) come on line and contribute
accordingly to the computation of the percept. The final
result, then, is a consistent tendency to see unity, or a
single object, despite partial occlusion. This captures very
well the tendency of human adults to perceive partly
occluded surfaces as arising from unified objects, but it
does not imply that we would be biased toward seeing
any specific number of objects when we first encounter a
scene (as suggested by Munakata & Stedron).

Match between infant and model behavior 
and experience (Cohen & Chaput, Munakata 
& Stedron, Smith): How effectively do our 
models capture the transition across early 
infancy toward veridical perception of object 
unity, and how closely does our artificial 
environment resemble that of infants?

Although the model generally fits the developmental
profile observed in infants, a number of commentators

1 In fact, these networks can be seen as partial autoencoders. Their task
is to reproduce on the output units the initial low-level feature description
produced by the collective outputs of the perceptual modules. How-
ever, rather than modeling the complete autoencoding of all features,
we have only modeled how the autoencoding of a single feature (the
unity feature) would be computed. This is a legitimate approach
because all the output features in an autoencoder are computed inde-
pendently from the same hidden unit representation. An interesting
direction to follow up this work would be to see how full auto associ-
ation would effect the network’s performance on the unity task and
how the internal representations across the hidden units would change.
2 One can think of the decaying target trace as a short-term iconic
visual memory. It could be implemented using a parallel bank of per-
ceptual feature units with decaying activation.
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have pointed out that there are significant ways in which
it also differs from infant performance. We argued in the
target article that these differences reflect the divergence
between the content of our schematic environments and
the infant’s far richer experiences in the real world.
Responses consistent with those interpreted as evidence
of a concept of unity can be acquired by an associative
learning system. Through interactions with the environ-
ment, the system learns which combinations of percep-
tual cues predict unity in an ambiguous context. The
networks’ training environment is overly simplified, but
we feel it is representative of experience infants may
have.

Notably, the complexity of the environment is import-
ant in determining the generality of the unity response
acquired. Training in the more complex environment
slows down the acquisition of a veridical unity response
on the full cue event (as compared to the model’s per-
formance with a limited environment), but it greatly
improves performance on unity problems as a whole (cf.
Figures 7 and 8). This apparent delay is caused by the
fact that in the full cue event, the networks had to learn
to deal with a large number of cues that sometimes were
associated with unity, and sometimes not. (Having more
cues does not necessarily mean that a problem is easier
if  some of those cues are not reliable indicators!) A
straightforward prediction from these results is that
infants will learn to respond appropriately to events that
contain a very reliable indicator (such as the lack of
common motion in events 15–26, a predictor of disjoint
objects) well before they are able to perform correctly
on the ambiguous full cue event (i.e. events 1 and 2).
Similarly, motion, in some cases, appears to have a de-
trimental effect on the perception of object unity. This
finding is somewhat counterintuitive given the import-
ance of many kinds of rigid motion to infants’ unity
perception (Kellman, 1996). However, not all rigid mo-
tions reliably specify unity to infants: as noted by Cohen
and Chaput, Eizenman and Bertenthal (1998) reported
that infants fail to perceive unity in a stimulus in which
a rod is seen to oscillate in the frontoparallel plane until
around 6 months, in contrast to much earlier unity
perception when the rod undergoes lateral translation
(2 months; Johnson & Aslin, 1995). In other contexts,
motion can have both an inhibitory and facilitory effect
on infants’ object perception (see Burnham, 1987, for a
review). Our models do not do justice to the complexit-
ies of real-world motion of objects, of course, and much
remains to be explored, both in modeling and empirical
testing of the role of motion in the emergence of object
perception.

Cohen and Chaput suggest that our environment
might be ‘giving away the answer’ to the question of

unity percepts by training the models in very specific
environments, and we acknowledge that this is a funda-
mental challenge. An important point growing from this
issue is the nature of the infant’s environment as he or
she is able to perceive it. There are two serious impedi-
ments to a full understanding of how experience can
contribute to infants’ object knowledge. First, we know
little about real-world scenes in terms of the frequency
with which objects are seen in their entireties, the extent
to which they are occluded when behind nearer surfaces,
and the transitions between these two circumstances.
There are indications that the statistics of natural scenes
have a powerful influence on cortical visual develop-
ment, in terms of orientation selectivity (Coppola,
Purves, McCoy & Purves, 1998; Olshausen & Field,
1996). An investigation of the probabilistic nature of
occlusion in the optic array, likewise, would prove in-
valuable to our understanding of infant cognitive devel-
opment. Second, we cannot assume that the infant’s
experience in the real world will match an adult’s,
because of obvious limitations in basic visual function
(such as acuity) and exploratory action (such as eye
movements, prehension and locomotion). Such limita-
tions will hamper the infant’s ability to gain information
in an efficient way (Campos, Anderson, Barbu-Roth,
Hubbard, Hertenstein & Witherington, 2000; Johnson &
Johnson, 2001). 

What, indeed, have we learned? (Munakata & 
Stedron): What do our models tell us about 
infant development?

Munakata and Stedron take the models to task for fail-
ing to provide ‘insights into the details of how infants
perceive object unity and how this ability develops’,
implying that we have done little more than to document
the capacity of connectionist models to learn statistical
regularities. We would reply that infants can learn statist-
ical regularities too (Saffran, Aslin & Newport, 1996),
even as young as 2-month-olds (Kirkham, Slemmer &
Johnson, in press); does knowing this mean that we have
solved all the problems of cognitive development? 

The contributions of our models can be stated in
Munakata and Stedron’s own terms, which were
expressed elsewhere in a different context (Munakata &
Stedron, 2001). First, our models allow us to ‘compare
competing theories’ (p. 166) by documenting the plaus-
ibility of a learning account of unity perception, as
opposed to a core principles account (e.g. Spelke & Van
de Walle, 1993), thereby addressing a longstanding and
fundamental debate. Second, our models adhere to the
Munakata and Stedron (2001) maxim that ‘simple is
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good’ (p. 167) by demonstrating how relatively complex
object knowledge can arise out of simpler perceptual
mechanisms that are likely to be functional in the young-
est infants. Third, models ‘can fail and provide insights
when they do’ (p. 167), an apt descriptor of our models’
tendency to get tripped up by texture information. It is
probable that infants use texture information in a differ-
ent way than did our models (i.e. as depth information;
see Johnson & Aslin, 1996), and the differences between
infants and models in this respect remain a fruitful ques-
tion for future research. Fourth, the models ‘have some-
thing to say about change as well as origins’ (p. 164).
Figure 10 in Mareschal and Johnson (this volume)
depicts the development of cue use in terms of connec-
tion strengths between perceptual modules and hidden
units. As discussed in the section ‘Learning cue associ-
ations’, a clear picture emerges of increasing veridicality
of object perception following reliance on multiple cues.
Little is known about similar processes in human in-
fants, but the idea is highly plausible, and testing of this
hypothesis is under way. Fifth, and finally, Munakata
and Stedron (2001) provided the astute observation that
‘we will make the most progress by specifying alternative
models that build on existing strengths and begin to
address limitations’ (p. 170). We share this position,
noting that models are an invitation to a dialogue. All
models are approximations, and only approximations.
Our models represent but one stage in the long effort to
understand mechanisms of development and the origins
of object knowledge, and we look forward to further
empirical efforts from the commentators and others as
we approach this goal.
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