Centre for Brain and Cognitive Development The First 10 Years and beyond

Michael Thomas (2002)

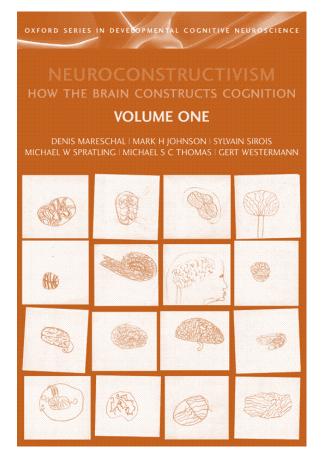
CBCD 21st Anniversary Workshop Mary Ward House Friday 15 November 2019

Where I came from:

- Atypical development
- Williams syndrome
- Modularity, representational redescription
- Developmental trajectories
- Computational modelling

Impressions of the CBCD when I arrived

- On TV / in the media a lot
- Testing lots of babies!
- Very bothered with where babies were looking
- Faces
- EEG
- Very Biological
- Typical development
- Interactive specialization, sensitive periods



Developing ideas at the CBCD

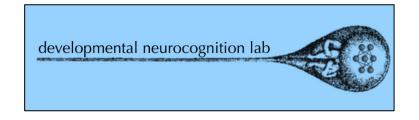
We couldn't agree on the difference between 'Learning' and 'Development'

	Timescale	Reversi- bility	Age of onset	Rate	Passive or Active?	Domain general vs. specific	Underlying mechanisms	Type of info processed	Inductive method
Learning	Quick One shot	More reversible (forgetting)	Later in life Episodic?	Can be increased through practice	Passive internalisat ion	Specific to task	Strengthen synapses within architectures?	Experiences of an individual	Search hypothesis space given experience
Development	Slow Several years	Less reversible	Earlier in life	Cannot be accelerated	Active exploration	Global across domains	Morphological changes of neural architectures?	Experiences common to all members of species	Alter / enrich hypothesis space

Lots of activity on the surface, underneath things gradually move...

CBCD moves...

- Developmental disorders
- Autism, ADHD, Down syndrome
- At risk sibling studies
- Interventions
- Natural pedagogy
- fNIRS
- Global health
- Infants and technology



My moves...

• Educational neuroscience

- Computational modelling of variation in typical development
 - Genetic versus environmental influences on developmental trajectories

What I've learned (theoretically)

• What's special about human development?

• What changes in how the brain works across development? (... not learning!)

What I've learned (theoretically)

• What's special about human development?

- Mammalian central nervous system is selected by evolution for generality / flexibility (similar plan across species)
- Species specialisations come from:
 - Sensory or motor periphery forcing structure on CNS
 - Changes in neuromodulators altering social motivation and attention
 - Flexible reallocation of neural tissue to active channels (neuronal recycling is the main principle of operation)
- Insight into the origin of uneven cognitive profiles in heritable developmental disorders?

Evo-devo

What changes in how the brain works across development? (... not learning!)

- Resolution of the specialized systems increases
- Speed of communication between neurons increases
- The modulatory system is slow to develop gradually improves in its ability to control the specialized systems according to goals and context
- Brain better able to build plans that stretch deeper into the future
- Learns basic lessons about 'what works to get what I want', whether people are to be trusted
- Dynamic coordination of all the parts of the brain improves, including the interface of plans, emotions, and actions
- Motivations change at puberty, altering social behavior, decision-making and environment