Representing occluded objects in the human infant brain

Jordy Kaufman*, Gergely Csibra and Mark H. Johnson

Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, University of London, London WC1E 6BT, UK

*Author and address for correspondence: Department of Psychology, University College London, Gower Street, London WC1E 6BT, UK

(j.kaufman@ucl.ac.uk)

Reed 17.04.03; Accep 18.06.03; Online 01.08.03

One of the most striking phenomena in cognitive development has been the apparent failure of infants to show 'object permanence' in manual reaching tasks although they show evidence for representing hidden objects in studies measuring looking times. We report a neural correlate of object permanence in six-month-old infants: a burst of gamma-band EEG activity over the temporal lobe that occurs during an occlusion event and when an object is expected to appear from behind an occluder. We interpret this burst as being related to the infants' mental representation of the occluded object.

Keywords: object permanence; gamma oscillations; infant; egg

1. INTRODUCTION

Since the original observations of Piaget (1954), one of the most striking phenomena in cognitive development has been the apparent failure of infants to show 'object permanence'. When an object is occluded by a cover, infants often behave as if it is no longer present: out of sight is out of mind. By contrast, studies measuring looking times reveal quite sophisticated reasoning about hidden objects, even in young infants (for a review, see Baillargeon 2001). In a previously separate line of research, sustained responses in neural circuits have been identified as a mechanism for maintaining representations of objects during a period of occlusion (Rainer & Miller 2000). In particular, gamma-band (ca. 40 Hz) activity in human adults has been associated with maintaining an object in mind (Tallon-Baudry et al. 1998). Although gamma-band activity can be recorded in infants (Csibra et al. 2000), it has never previously been used to investigate object permanence in development. In the present study, we measured infants' electrophysiological responses to occlusion events at the age where reaching behaviour does not yet show evidence of understanding 'object permanence'.

2. EXPERIMENT 1

Prior to examining neural activity, it was necessary to determine that our experimental stimuli were sufficiently realistic to be perceived as real objects by the infant participants. Therefore, we created digital video sequences of real objects involved in expected and unexpected events and measured infants' looking times to them in a traditional 'violation of expectation' paradigm (Spelke 1985).

(a) Material and methods

(i) Subjects

Twenty-one six-month-old infants (aged 163–195 days, mean age of 182.2 days) participated in this experiment. A parent of each infant participant gave informed consent prior to participation. This and all subsequent experiments were carried out in accordance with human subjects ethical guidelines mandated by the National Institute of Health (USA) and the Medical Research Council (UK). An additional seven infants were tested but are not included in the data set owing to fussiness (n = 3), experimental error (n = 3) or a failure to engage visually with the stimuli (n = 1).

(ii) Stimuli

Each infant was shown sequences of video-recorded and digitally edited events depicting an object (a train engine) appearing, or failing to appear, out of a tunnel when it should or should not have been there. Infants were first familiarized with the situation by watching a repeating event in which the engine entered the screen and then went into, and reversed out of, the tunnel. Each familiarization cycle lasted for 6 s. The familiarization trial ended when infants had looked at the screen for a minimum of 30 s and then looked away from the monitor for at least 2 s, or until 120 s had elapsed. Following the single familiarization trial, four test events (expected appearance, unexpected appearance, expected disappearance, unexpected disappearance) were then presented in counterbalanced order. Each event cycle lasted for 6 s (which did not vary across the four video types). The train subtended a visual angle of 5.1° and it moved at a speed of 0.18° visual angle per second. Looking time (figure 1a) was measured from the point at which infants began to look continuously from the start to the end of the event sequence (thus providing certainty that they had witnessed the expected or unexpected aspects of the event). The event was repeated until infants looked away from the video monitor for 2 s. Longer looking times are thought to reflect greater information processing in infant behavioural research (Spelke 1985).

(b) Results and discussion

The mean looking time during familiarization was 80.1 s (s.d. = 33.1 s). Looking times to the test events are depicted in figure 1b. A 2 × 2 ANOVA (group × event type) on looking times yielded a significant interaction (F_{1,20} = 4.9, p < 0.05), while t-tests revealed a significant expected–unexpected looking time difference only within the disappearance condition (t_{10} = 3.79, p < 0.005).

Our results are consistent with earlier findings (Wynn & Chiang 1998) that infants are highly sensitive to the unexpected disappearance of an object (consistent with object permanence) but are less sensitive to an unexpected appearance. Several possible explanations for the appearance/disappearance discrepancy have been offered—including the idea that infants can infer the existence of two objects behind an occluder (Baillargeon 1994; Aguiar & Baillargeon 2002). Whatever the correct explanation for this result, experiment 1 demonstrated that infants react to our computerized stimuli as if they were watching real objects.

3. EXPERIMENT 2

In experiment 2, we measured the brain electrical activity (via an electroencephalogram, or EEG) of infants who were watching the disappearance events that we used in experiment 1. We proposed that gamma-band oscillatory activity might be present in the infant brain during object occlusion.

(a) Material and methods

Participants in this experiment were six-month-old infants (n = 22, aged 159–195 days, mean age of 178.0 days). An additional 45 infants were tested but were eliminated from the analysis owing to insufficient quantifiable trials (n = 41) or experimenter or technical problems with the EEG apparatus.

Proc. R. Soc. Lond. B (Suppl.)
Proc. R. Soc. Lond.

4. EXPERIMENT 3

If the sustained gamma activity seen in experiment 2 is related to the representation of non-visible objects, it should also be evident in an ordinary event of temporary hiding, such as the expected appearance event in experiment 1. Furthermore, an alternative explanation for the increase in gamma activity following the uncovering event
Human infant object representation
J. Kaufman and others
03bl0137.S3

(a) Time–frequency analysis of the average EEG at three electrodes over the right temporal cortex (around T4) during the phase in which the tunnel was lifted showed higher activations when the object should have been below the tunnel. Black asterisks below the maps indicate a significant difference from baseline; red asterisks indicate a significant difference between conditions in the average gamma activity in 200 ms-long bins (t-tests: *t_{21} > 2.00, p < 0.05; **t_{21} > 2.80, p < 0.01).

(b) A topographical map of the between-condition difference of gamma-band (20–60 Hz) activity during the occlusion-related peak gamma activity (from –400 to –200 ms) revealed a right-temporal focus. Circles signify right temporal electrode sites.

Figure 3. Gamma-band activity in Experiment 3. Statistical significance legend and topographical map parameters are the same as those in figure 2 (t-tests: *t(14) > 2.25, p < 0.05). Circles signify right temporal electrode sites.

is that it is correlated with the perception of an impossible event—and not directly related to object representation. To test these hypotheses we conducted another EEG experiment using only the appearance events.

(a) Material and methods

Infants (n = 15, aged 161–199 days, mean age of 178 days) watched expected and unexpected appearances in which a train was always revealed when the tunnel was lifted (see figure 1a). Each infant contributed 20–69 (mean of 40.0) trials to their average (out of a mean 69 presentations). In all other respects, the methods were identical to those of experiment 2.

(b) Results and discussion

The results and analyses are described and illustrated in figure 3. As in the first EEG experiment, an increased gamma power was evident at right temporal channels during the time and condition where the train should be hidden underneath the tunnel. There was no significant increase in gamma activity time-locked (i.e. temporally related) to the unexpected appearance event. As in experiment 2, the differences in oscillatory activity by condition were specific to right temporal channels.

Proc. R. Soc. Lond.
The results of experiment 3 bolster the findings of experiment 2, that is, infants showed an increase in gamma activity at right temporal electrodes when the train should have been underneath the tunnel. However, and in contrast to the earlier experiment, following the phase in which the tunnel was lifted there were no significant differences in gamma power either between the two conditions or from the baseline. This supports the notion that the increase in gamma power following the lifting of the tunnel in the first EEG experiment is related to representing an object in the face of contradictory visual input.

In the latter EEG experiment, because the train was always revealed, there was no need to maintain a representation of the object independent of visual input. These results further advance the interpretation that gamma power in the right temporal area reflects active maintenance of occluded objects.

We concede that infants may not have seen the unexpected appearance sequence as ‘impossible’ because they could potentially infer that there were two trains underneath the tunnel. This leaves open the possibility that the second gamma burst in experiment 2 was related to an unsolvable violation of object knowledge. Although this theory deserves further investigation, we believe that our explanation, which posits a single process of object maintenance, is sufficient to account for the observed gamma activation pattern in these studies.

The occlusion-related neural activity also suggests an explanation for the findings of looking-time studies addressing infants’ knowledge of objects. We suggest that increased looking time may reflect a conflict between the visual input and the current mental representation of an object. Whatever the exact neural basis of the effects that we have observed, our finding that increased gamma-band activity is associated with the representation of hidden objects will inform fundamental issues about how infants process their visual world.

Acknowledgements

J.K. was supported by postdoctoral fellowships from the National Science Foundation (INT-9901349), National Institute of Child Health and Human Development (F32 HD08568-01), the British Academy (SG-31088) and Sackler Institute. Financial support was also provided by the UK Medical Research Council Programme Grant (G97 15587) to M.H.J.